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PREFACE

This book has been written with the object of giving an account
of the various ways in which matrices of finite order can be reduced
to canonical form under different important types of transformatior, >
While the work has been planned to serve as a sequel to a former
publication, The Theory of Determinants, Matrices, and Inaipesints
(1928}, cireumstances have sllowed us to make it practicelly” inde-
pendent and self-contained, with the least possible oxgrlapping of
material in the two books. A certain knowledge of the” clementary
theory of determinants is Ppresupposed, but no preyious acquaintance
with matrices. SO

The volume on Tnvariants—as it will be refafred to in subsequent
Pages—in giving an introductory account of Mugtrices and determinants,
treated only of such properties as belonged to the general linear
transformation ; for these are the p;éiierties which have the most
direct bearing on the projective inyartant theory, to which the later

chapters were devoted. In theldomenclature of the work before .

us, the freatment was confined o the diagonal case of the classical
eanonical form, in which {(the clementary divisors are necessarily
linear., \ '
) In the present wotk>we return to consider, in elose detail, those
important cases ig\Which the elementary divisors are no longer re-
- stricted to be Hiedr, but may be of general degree. To adopt a
geometrical n{'oﬁé' of speaking, it is as if we had formerly been con-
cerned pyre'l} with the projective properties of quadrics in general
positionsblis had now returned to the consideration of all possible
istiflopions between quadrics under certain prescribed conditions ;
such distictions, for example, as those which persist throngh all
projective transformations, or again through all rotations, and so on,
The subject-matter of the canonical reduction of matrices, which
has numerous and important applications, has received attention in
soveral treatises and a large number of original papers, The historical
notes which we have appended to each chapter are intended to give

& brief review of what has been done on each topie, to apportion due
¥ .
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credit to pioneers, and to stimulate the student to furthe? rcadigg.
{We would warn him, however, to make sure at the outses, in reading
any work on groups or matrices, whether the author means 4B or

- what we have denoted by B4 when he writes a product.) The most
complete accounts of the theory available are those of Muth (Ele-?ngra..-
tartetler, 1899) and Cullis (Matrices and Determinoids, Vols. 1, 11, 11,

- 1913, 1918, 1925). 'We have preferred to follow the lead of Cullis, Wh“.
develops the theory in terms of the structure and properties ol
matzices—m matrix idiom, as it were, rather than in terms of bilinear
and quadratic forms, or of linear substitutions. R\,

We take the opportunity of acknowledging our indebtedness to
the work of those writers who have given a sustainedaccount of the
theory, in one guise or another; in particular tq Mhth, as above, to
Bromwich (Cambridge Tract on Quadratic Forns,’ 1906, and various
papers), to Bocher (Higher Algebra, 1907% wHilton (Linear Substi-
tutions, 1914), Cullis (Vol. IIT of Matricesyand Determinoids, 1925)
and Dickson (Modern Algebraic Theorigs, 1926).

' While we have fried to include (@il the principal features of the
theory and have sought to make.he sequence of argument reasonably
fluent, even allowing ourselves ‘moderate latitude in digression and

- explanation, we have, at thé%ame time, aimed at a certain compact-
ness in the formule and{demonstrations. This has been achieved in
the first place by a,s'ﬁa}ematic use of the matrix notation, to which
we shall again refég} in the second place, by confining the contents

- of each chapter &lmost entirely to general theorems, and by relegating

corollaries andl applications to the interspersed sets of examples.

These.examples are intended to serve not so much as exercises, many

being\quité easy, but rather as points of relaxation, and running

comentary ; they will, however, be found to contain many well-
kyovm and important theorems, which the nofation establishes in the
£\ wiinimum of space.

" We attach the preatest importance to the choice of motation.
Inferring from perusal of Cullis that the emphasis laid since the time
of Cayley on the square matrix might well be zemoved, we resolved +o
continue the plan adopted in Tnvariants by making the fullest use of
rec_t'an:gular matrices and submatrices, and of paztitioned matrices,
by insisting on the condition that the non-commutative rules of pro-

. duct. order hold without excepbion, and by distinguishing always
between a matrix of a single row and one of g single column, When
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this is done, all the systems which appear, whether scalars, vectors, or
matrices, can be regarded as rectangnlar matrices or products of
rectangular matrices, and the theory is thus greatly unified. We
would draw special attention to the notation z'Ay for the bilinear
form, z’dz for the guadratic, and #’Az for the Hermitian form, be-
lieving that these notations will enable the linear transformations and
the bilinear, quadratic, and Hermitian forms which are fundamental,
for example, in analytical geomefry, dynamies, or mathematical stat-
istics, to be manipulated with ease. N\

Through considerations of space we have not been able to inglude
many applications to geometry, but the results are readily adap'ﬁé:b[e:
nor to the theory of Groups, where, as Schur has shown, partitioned
matrices can be. used with elegance and advantage. N

The reader already familiar with the theory will also{dbserve that
certain established methods of dealing with the subjett have hardly
been touched upon, notably the methods of Weierdtrass and Darboux,
the theory of regular minors of determinants ‘@hd the treatment of
quadratic forms by the methods of Kronether. We have, in fact,
allowed ourselves a free hand in dealing(Pith the results of earhier.
writers, in the belief that the outcom@would prove to he an cagicr
approach to a subject that has oftenfailed to win aflection; and the
methods of H. J. S. Smith, Sylvester, Frobenius, and Dickson proved
in themselves quite adequate&¥ithout the inclusion of other paraliel
theories. A thorough assiffilation of the algebraic implications of
Euclid’s H.C.F. process,*and of the notion of linear dependence, fur-
nishes the clue to mdny passages. Our tribute to Kronecker finds
expregsion in Chapter’IX, which is an essay towards giving a fresh
derivation of hiyelassical results concerning singular pencils ; we have
treated this\ Ky Tational methods, and we trust that an intricage
argument Ha$been materially simplified.

Ou;.\l;éét thanks are due to Dr, E. T Copson and Mr. D, E.
Rujherford at St. Andrews Universis » Who have taken an interest
in the.progress of the work, and have offered valuable suggestions at
the proof-reading stage; and especially to Dr. John Dougall, for his
critical vigilance and expert mathematical and fiechnical help during
the passage of the work through the pross.

H W, T
A C A

‘Br. ANDREEWS
EDINBURGH } December, 1931,



PREFACE TO THE SECOND IMPRESSIOM

_ Various emendations of the text of the First Edition have becn:
mcorporated in the present impression. We take occasion t6 fh i
those friends who first brought the principal ones to our ndtice:
particular Dr. J. Williamson, who pointed out the gap imphe’thcory
of Hermitian pencils (p. 131) now supplied by the sign@tﬁi‘e test, atnl
Dr. W. Ledermann, who gave valuable criticism on the subject i

singular pencils. m"\'\'
\ H W T
Sr. Ax ..\\,,’ A C. A
R . DREWS #? #
EDINBURGE } November, 1944, ‘..\

PREFACE f{@f?THE THIRD IMPRESSION

The book" lifs been extended by an Appendix which, as eontinuin g

the_thep;j?bj; the rational methods of reduction, may be read as a
suppléwent to Oha’ptgra Vand X. A few additional examples have
: begg:. erted, particularly on p. 30 and P- 57. Our thanks are more
A8pecially due to Dr. D. E. Ratherfo

‘th rd, whose writings
\'"\} the material of the Appendix. 1tings have suggested

H W.T

Mrmrom A C. A,

Fotpono | 0c0br. 1951,



DEFINTTIONS AND FUNDAMENTAL

I = T~ | T S O N S

CONTENTS

CasrTER T

N\

PROPERTIES OF MATRICES S

F 4 j"{g'e
L. Imtroductory - - - - - - - - \' M1
. 2. Definitions and Fundamental Properties .~ -4 N\ 1
3. Matrix Multiplication . . . . . . e
1. Reciprocal of s Non-Singular Matrix - . - L. -4
5. The Revcrsal Law in Transposed and Reciprosal Produsty :‘ - . 4
6. Matrices Partitioned into Submatrices . w0 - - 5
7. Isolated Elements and Minors - . : '\ \\ . - . g
8. Historical Note, - - . - D\ . . - 8
GHAPTE‘R.J;E:’ )
ELEMENTARY TRANSFORMATIONS. BILINEAR AND
QUAD.I{ATIC FORMS
- The 8olution of » Linear & ‘t;gons in # Unknowng - - - - 10
+ Interchange of Rows aqd%&umns in 2 Determinant or Matrix . - 10
. Linear Combination, oii‘was or Columns in & Determinant or Matrix - 32
. Multiplication of R:q?vé or Columns - . - - - . 19
- Linear Transforfiation of Variables - . - . .13
. Bilinear a.u%fQﬁ’adra.tic Forms - - . T
. The ng}igét Common Faetor of Two Polypomials . - - - 16
8 Mightrieal Note . . . . - . 18

Caarrer IIT

THE CANONICAYL. REDUCTION OF EQUIVALENT MATRIORS

. (Genersl Linear Transformation

2. Equivalent Matrices in a Ficld -

- The Equivalence of Matrices with Integer Flements - - -
ix

N
- 2



CONTENTS

X . Page
4. Polynomials with Matrix Coefficients: A-Matrices - - - - 2]
5. The H.C.F. Process for Polynomials - - - . - -
6. Bmith's Canonical Form for Equivalent Matrices - - . -3
7. The H.C.F. of m-rowed Minors of a a-Matrix .« - - - - 25
8, Equivalent -Matrices - - - - . - - - -2
9. Obeservations on the Theorems - . - - - - - 27

10. The Singular Case of # Linear Equations in » Variables - - - 20

11. Historical Note - - - - - - - - - A\ 3

O\
Crapree IV . O
SUBGROUPS OF THE GROUP OF EQUIVALENT
TRANSFORMATIONS .«’\.\
1. Matrices of 8pecial Type, Symmetrie, Orthogonal) &o. - - - g
2. Axisymmetric, Hermitian, Orthogonal, and Utifaty Matrices - - 34

8. Bypeoial Subgroups of the Group of Equivga}e}t’ Transformations - -3
4. Quadratic and Bilinear Forms aasocia,té@ with the Subgroups - - 37
5. Geometrical Interpretation of the.f,}ﬂ']jnea.tion - - - - - 40
6. The Poles and Latent Points of & €ollinestion - - . . . 40
7. Change of Frame of Referemea - - - - . - - 41
8. Alternative Geometﬂcal~fﬁterpretation - N . - - - 42
9. The Cayley-Ha.milton'ﬁ?heoram - - - - - - - 43
10. Historical Noda, “* = . . - . . . . . .

\NO”
O . CearreR V
' M
~\ A RATIONAL CANONICAL FORM FOR THE
o\ COLLINEATORY GROUP

~d j Lincar Tndependence of Vectors in a Field - - - - - 45
' 2. The Reduced Characteristio Function of & Vector . . . . 48
3. Fundamental Theorem of the Reduced Characteristic Funection

- . 47
4, A-Rat&qna.l Canonical Form for Collineatory Transformations - - 49
5. Properties of the R.C.F.’s of the Cancnical Vectors - - - - 52
6. Observations upon the Theorems - - - - - - - 53
7. Geometrieal and Daal Aspect of Theorem IT - . - . - 53
8. The Invariant Factors of the Characteristic Matrix of B . . 54

8. Historical Note - . - - - - . -



[

e
5]

1.
2,
3.
4.

CONTENTS x
CraprER VI
THE CLASSICAL CANONICAL FORM FOR THE
COLLINEATORY GROUP
. Page
» The Classical Canonieal Form deduced from the Rational Form . - 08
- The Auxiliazy Unit Matrix - - - . . . g
- The Canonical Form of Jacobi - - - - - - - 64
- The Classical Canonical Form deduecd from that of Jacobi - -, Bt
. Uniqueness of the Classical Form; Elementary Divisors - - - 69
Sealar Functions of a Square Matrix, Convergence - - - WS
- The Canonieai Form of a Sealar Matriz Function - - (N 95
- Matrix Determinants: Sylvester's Interpolation Formula . = S
» The Segre Characteristic snd the Rank of Matriz Powers 2N . 179
- Histerical Note - . - .. . LY L g
. CearTER VII :1\\:
CONGRUENT AND CONJUNCIIVE TREN STORMATIONS:
QUADRATIC AND HERMITPAN FORMS
» The Congruent Reduction of a Conic _ Ny . . - . . g3
- The Symmetrical Bilinear Form R - ] ) ) ) T s
. Generalized Quadratic Forms and’ Oo]:gmcnt Transformations - - 84
- The Rational Reduction of Qithdbatic and Hermitian Forms - - B&
. The Rank of & Quadm’qic m“ :Hermitian Form - - - - - - 86
The Congruent Reducﬁﬁn\f o Skew. Bilinear Form - - - - 87
. Definite and Indeﬁaité Forms. Sylvester's Law of Inertia - - 89
. Determinantal Thgérems concerning Rank and Tndex - - 90
- Congruent Redngtion of a General Matrix to Canonical Form - -9
. The Orthq{é?iﬁzing Process of Schmidt - . - - - 95
. Obscrvations on Schmidt’s Theorem - - - - - . o8
. Hisﬁgi:ip’al Note - . . - .. - - - - o8
A% Crarrer VIIT
CANONICAL REDUCTION BY UNITARY AND} ORTHOGONAL
TRANSFORMATIONS
The Latent Roots of Hermitian and Real Symmetric Matrices - ~ 100
The Concept of Rotation Generalized - - - - . - 102
The Canonical Reduction of Pairs of Forms or Mairices - . « 106
Historical Note - - - - . - - - . - 111

i N N A

=TT T A



i : CONTENTS

CrarrER IX
THE CANONICAL REDUCTION OF PENCILS OF MATRICES

Page
1. Singnlar and Non-Singular Pencils - - - - - - - LIt
2. Equivalent Canonical Reduction in the Non-Singular Case - - - 115
3. The Invariant Factors of & Matrix Pencil - - - - . - 118
4. Invarisnce under Change of Basis - - - - - - - 117
5. The Dependence of Vectors with Binary Linear Elements. Minimal\
Indices - - - - - - - - - PR ¥ b
6. 'The Canonical Minimal Submatrix, and the Vector of Apolariti_y(\'-\'g\ -
7. The Rational Reduction of a Singular Pencil - - § W - 12
- 8. The Invariants of & Singular Pencil of Matrices - - ~.( N - - 128
9. A]iplicaiﬁon to Singular Pencils of Bilinesr Forms S P . - - 129
10. Quadratic and Hermitian Pencils - - RN - - . 130
11, Weierstrass’s Canonical Pencil of Quadratic Forms - - - - 13
12. Rattonal Canonical Form for Hermitian a.;gs(Quadra.tic Pencils - - 133
13. Bingular Hermitian and Quadratic Penailse” - . - . . 134
14. Reduction of a Pencil with & Basis of Transposed Matrices - - - 135
» 15, Rational Canonical Form of the«]}&irb“going Peneil - - - - 140
16. Historical Note - - Q S ...

LN Cmserer X

+\J
APPLIOATIONS\\OF CANONICAL FORMS TO SOLUTION OF
LINEAR MATRIX EQUATIONS. COMMUTANTS AND INVARIANTS

L. The Auxiltafy Unit Matrices - -

- . . - - - 143
2. Comp\tﬂ%ﬁts S S T S, O'L

3. ScaliwFunction of & Matrix - - - - - - - - 149

4 :{?onneadon befween Matrix Functions and Quantum Algebra - - 150

o ~5-* Sealar Functions of Two Matrix Variables - - - - - 13l
\ ) 6. Symmetric Matrices and Resolation into Factors - - . - 152
7. Invariants or Latent Forms of Matrix - - - - - - 154

8. Latent Quadratic Forms - - - - - - - - 133

9. The Resolvent of a Matrix - - - . - - - - 180

10. The Adjoint Matrix and the Bordered Determinant - - - - 181

11. Orthogonal Properties of the Partial Besolvents - - - - 183

12. Application to Symmetric Matrices. Reduetion by Darboux - - 164

13. Historieal Note

Ce .. 166



2
3
4

5
i}

7

.CONTENTS

CearrEr XT

xiii

PRACTICAT, APPLICATIONS OF CANONICAL REDUCTION

1. The Maximum and Minimum of & Quadratie Form

. Maxima and Minima of s Real Function -

"3. Conditioned Maxima and Minima of Quuadratic Forms

- Fhe Vibration of a Dynamical Systern aboub Equilibrium
. Matrices and Quadratic Forms in Mathematical Statistics -

+ Bets of Linear Operational Equations with Constant Coefficienta -

. Historical Note

APPENDIX

MBoELLANEOTS ExaMrrEs

IrDEX - -

- - 170
171

SRS
O
v’\:‘ . 180
3
. 1
- - 195



.a._#..m._.




The

‘Theory of Canonical Matrices

A
CHAPTER I \

0"'.
S 3

Drrmrrions a¥p Funpamentarn Propreries or MaTRices

. infroductory, . \.

The theory of canonical matrices is concernc&mth the systematic
tavestigation of types of transformation whish reduce matrices to
s+ simplest and most convenient shape, \ The formulation of these
wa510us types i3 not merely useful as 2 p]:e]ﬂnma.ry to the deeper study
of the properties of matrices themsel¥es; it serves also fo render the
theory of matrices more immediately available for numerous appli-
cations o ‘geometry, differential‘equations, analytical dynamies, and
the like. Quite early, for gmp e, in co-ordinate geometry, when the
equation of a general eonie‘is simplificd by reference to principal
axes, or again when two.general conics are referred to their common
sclf-conjugate trianglef“the procedure invelved is really equivalent
to the canonical ;{e'@uétion of a matrix.

2. Deﬁnitions'%ﬁ Fundamental Properties.

It will be of advantage to recall briefly the definitions and funda-
m?ﬂﬁf‘gmperﬁea of matrices. By a matrix 4 of order « is meant a
systen™Of elements, which may be real or complex numbers, arranged
_in a square formation of # rows and columns,

Gy @z --- O
Gy Gy ... Gan

A= [aé,-] — e e e e b L B (1)
[aﬁl L2 P R annJ

{(®420) . 2
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where @, denotes the element standing in the 4th row and the jih
colump, the (#)th element, as we shall frequently call it. The deter-
minant having the same elements is denoted by | 4|, or | a; |, and is
naturally ealled the determinant of the matrix 4. We shali also mnke
continual use of rectangular matrices, of m rows and » columns, or, =
it will be phrased, of order m by n, m X n. Where there is only cne
row, so that m = 1, such a matrix will be termed a vector of the fivst
kind, or & prime; and it will often be denoted by a single small ita!:
w or v, Thus O
U=y, Uy oea ) o o 0 LN (B

{

7N\S ©
On the otker hand, a matrix of a single column, of\n elements, wiit
be termed a vector of the second kind, or a point; ahd to save space ii
will not be printed vertically but horizontally and distinguished by
brackets { ...}. Thus : V

= _ x={w1,a:2,...:',g,}}.. A 3!

The accented matrix 4’ = [a,,], obtained by complete interchan:ze
of rows and columns in A, is cal}ed:the transpose of 4. The dth ww
(@15 @izs ++ - 5 Ben) Of A 15 identied]l with the sth column of A°. Yor
vectors we have o' = [u,)' 24w}, ' = {3} = [3].

Matrices may be multiplied either by ordinary scalar numbers or
by matrices. The effegtiof multiplying a matrix 4 = [a,;} by a scuiar

~ Als to multiply eaghyeloment of 4 by A. The product is defined by

A\
LN M=l =Dad=AN . .. L. @)

Matriges‘e the same order ave added, or subtracted, by adding, or
subtracting, corresponding elements; so that a linear combination of

W

'\ ' -
- tviro{@ matrices 4 and B, with scalar multipliers A and p, is defined by
N , M pB={Qay+pb)l . . . . . (5

2\

\ ). Hence, it O= A4 4- uB, then ¢;, = At t-pby: and also O = A4’ -+ uB',

for the transposed matrices,

The nudl or zero matrix, whether square or rectangular, has all its
 elements zero, and will often be denoted without ambiguity by an
ordinary eipher. The wnit matriz, 1, is necessarily square; it has a

unit for each element in the principal dia ini
elements all zero, Thus P gonal, and the remaining

1=, %[:O’f*i]L. G

=1 t=j
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3. Matrix Multiplication.. ) A i
The multiplication of matrices by matrices, or matrix multipli-
cation, differs in important respects from scalar multiplication. . Iwo
matrices can be multiplied together only when the number of colnnnis
in the first is equal to the number of rows in the sccond. Matrices
which satisfy this condition will be termed conformable matrices; their

product 48 is defined hy - : o o
: ' L S

AB ={a,}[by] = g?]‘“ﬁ: bl = [es] = G, RS . (7} )

where the orders of 4, B, Care m X p,p X n, mX n respectively,
The process of multiplication is thus the same as the r01-by-coldvmn
tule for multiplying together determinants of equal order, \ It the
matrices are square and each of order n, then the correspbnding re-
lation, | 41| B[ = | O is true for the determinants | 44,98, 1 0].
" Matrices are regarded: as equal ‘only when they dre " element for
element identical. Thercfore, since a row-b y-column tyle will it general
give different. elements ffom 4 kolumn-by-row 1il8; the product BA,
if it exists at all, is usually different from AB.’,\(AB and B4, it may
be: observed, can coexist: only if: m = n.) A _Wg'mﬁst-:dshfereforgdistinf T
- guish always. between premultiplication,, as when B, premultipliad. by
4, yields the product AB; and. posizidtvplication, as when B, post-
multiplied by .4, yields the productB4. H 4B —. B4 the matrices
A4 and B are said to commute, O¥ to be permutable; and one of the
applications of the theory of‘o@onical matrices is t0.find the general
‘matrix X permutable with‘a“given matrix 4.’ Except for the non-
commutative law of multiplication (and therefore of divigion, defined
as the inverse operation) all the ordinary laws of algebra apply to
matrices; very much as they do in the elementary theory of vectors,
Of particular importance is the associative law (4B)C = A(BOY®
which allows.x\@,to dispense with brackets and to write ABC without
ambiguity . }r-;}ncc the double sumnation 2 Eaybiey; can: be carried
; d ; :

N k
out iy eijslz\er of the orders indicated. Similarly for the sum 4 + B + C.
. Theaboveremarksare restricted to the case of matrices of fimite order;
for the associative law of multiplication does not 'necess'arily hold when
any of the matrices involved has one or both of the orders #, » infinite,
The integers i, n, p which appear in (1) may take ‘any positive
value. One extreme. cage, when m = 5 — 1, yields the inner product
of the vectors « and 2. Thus '

i, WG b 4., + by Xy = E Uty =x'u’. . (8)
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The product here is a scalar. On the other hand, the product .,
which ‘exemplifies (7) with p = 1, m ==, is a sqiare matrix of ord-r
n, having &;u, for its (4j)th element, namely

ru=[ru]= @), . . . . . . (9

4, Reciprocal of 2 Non-Singular Matrix.

When the determinant | 4| = | a,;| of a square matrix 4 docs
not vanish A is said to be non-singular, and possesses a reciprocal or
inverse matrix R such that .

AR=RA=1 K\

The reciprocal B is unique, as will be seen, and is.:;(;zidily obtain:1,

from the theory of determinants. If 4,; denotes/the co-factor of a,; in

| 4|, the matrix [4,,] is called the adjosnt of Ajand exists whether !

E is singular or not. (The determinant | AN the adjugate of | 41
¥ . It follows that \\

T @a] [45] = [EaikAﬂ’k] ;’NQA |8:0=]4|L . (10

.+ Thus the product of 4 and its adjoint is that special type of diagonal

matrix called a scalar matrizs\ each diagonal element (5 — 7) 18 equal
to f.she determinant | 4 |,.and the rest are zero, If | 4| =0, we may
divide throughout by the scalar | 4 |, obtaining at once the required
form .of R. The (@)Qh,element of R is therefore 4,,| 4|, or, let us
say, a’, where ﬂxf’?eversed order of upper indices must be carcfully
noted.’ Writing now A instead of R, we have '

N A7 = [0 = [4,;,| 4|1, |40 . . (D)

By aetual multiplication A4 — 414 — I; so that the name

_r{ci@;ecai and the notation 4-1 are justified. It may be observed in

Passing that in products of matrices the unit factor may be intro-
:_;\; tduced or suppressed at Pleasure, like the unit factor of sealas algebra.

\

N

5, The Reversal Law in Transposed angd Beciprocal Produets,

A‘ fundamental consequence of the non-commutative law of matrix
rr.;ultlpll{:ahon is 13!16 reversal law, exemplified in transposing and re-
Ciprecating & continued product of matyices, Thus

(ABY = BA', (ABCY = 'B'4;, . . . (12)
and, i [A] %0, | B 40, [0] o0,

(AB) = B4, (4BC)1 = gaBraga, (13)

P TP TR U R WL
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EXAMPLES

1. Prove that the reciproeal of a non-singular matrix is unique, [If AR =1,
and also 48 = I, then AR — A8'= 0, the null matrix. By the disiributive law
A(R — 8)= 0, and hcnce A14(R— 8y=0. Thus R — 8)=R—8=0;
and 0 B = 8. All solutions X of the equation 4X = I are therefore cqual. But
A4~ is a solution and is therefors the unique solution.]

8. Verity (13) by premultiplying by B, 4, or G, B, 4 in turn.
- & Prove that [a¥][b"] = [6"], whero i, =1 2,.., n, provided that
o — T g, ’ ’
k=1
4 HAiwwa square matrix of order %, while u and  are vectors of the row and
column kinds respectively, then %A denctes a row vector while 4z denoctes,a

column vector. The products Au, x4 are undefined if n > 1. ()

8. What do 4%’ "4’ represent? [Column vector, row veobor.] . ;:\

‘6. Matrices partitioned into Submatrices,

It is convenient to extend the use of the fundamenta..lwl;ﬁ.v.?s; of com-
bination for matrices to the case where a matrix is regarded as con-

structed not so much from elements ag from sub trices, or minor -

matrices, of elements. (Cf. Invariants, p. 38.) Fq}@mmple, the matrix

. l'l 2:87 AV
A: 4 55@’;"

| L7759
can be written N
A — "\P Q
VR S8 F
\\
where \

.‘ p=[i ;]\Q:[EJ R=17,8], 8=1o).

Here the diagondl 3ubmatrices P and S are square, and the partition-
ing is diagonallysymmetrical. In the general case there may evidently
be m or fewet*partitions row-wise or column-wise. Let B be a second
squa,re'm;ati'ix of the third order similarly partitioned:

2 .1

B:[PI Ql]z 3 1:2],
R, 8 e
1 2:

then by addition and multiplication we have

P+P Q+Q1:l [PPrI-QRI PQ,-+Q8,
A+ B= , 4B=
) +_ [R-}-Rl S48, RP,+ SR, RQl-!-SSl} (14}

Q"
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‘i AB_‘_[%AﬁB,f”]:'{oﬁ], P (1)

\

* where, of course, ini each term of

$ FUN DA_MEI_\_I TAL PROPERTIES [Criap.

as may readily be verified. Ineach case the resulting matrix is of il
same, order, and is partitioned in'the same way, as the original Ml rix
factors. For example, in 4B the first element, PP, + QR,, stand. lor
& square submatrix of two rows and columns: and this is possible
since, by definition, both products PP, and QR, consist of two rows
and two columps. Similar remarks apply to the other submuairix
“elements ¥, Thus

. 1 29711 3 5 0- A
P+ 08, = [4 5} [2] * [6] 1= [14] + [0] N [1-1 il
giving the proper rectangular shape for the upper righﬁfhand miner,

It was observed earlier that a rectangular matrig~B could be ;.-
multiplied by another rectangular matrix A, provided that the nunier
of rows in B were equal to the number of columhs in 4. If 4 anid 5
are both partitioned into submatrices such thiethe grouping of ol s
in"4 agrees exactly with the grouping ofgows in B, it is not diffi-lt
to show that the product 4B can equally ‘well be obtained by treating
the' submatrices as eléments and proceeding according to rule.

The case of square matrices of the same order, similarly and sym-
metrically partitioned, is important. Let 4 and B be two such matrices,
and let 4, henceforth deript®*the (ij)th submatrix in the partitioned
form of A. (There will he Tittle further occasion in this book to refer to
determinantal co-factal’s,"and the notation Ay is well suited to the
new concept.) Therluib p, r are the orders of Ay, those of By, are . p,
and those of aqoﬁsér minor with the same k, as By, will be 7, ¢ with
the same 7. Fdr pach value of % the product 4, B, is thus a submatrix

of orders Pyg the sum ZA 4B, can therefore he formed, and gives
L MR TRUN. TE . ) '

t%u.a (e‘;r:)tl}\éruhmz?m of the product AB, where the latter is in par-

t1t1?§d form similar to 4 and B. We have then, for matrices

4 lay, B= 5, similarly and symmetrically partitioned,

G
Nk

e, of cou h £ « the order 4, B is preserved.
_ S'l.mllaﬂy bug u?zsym?ngtﬂc‘aﬂy..partitioned square matrices 4 and
B camnot be multiplied’ together by & rule of this kind; each can,
however,_ be multipled by the transposed matrix of the other, for then
the partitioning of the colimn-groups of the multiplier agrees with
that of‘ the row-groups of the multiplicand. The transposed matrix 4’
is readily seen %0 be 4' = [45], where the minor mairix A’y is itself
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transposed, and for matrices 4, B similarly but unsymmetrically
partitioned,
AB' =[Zd5Byl. . « . . . . (16)
k

EXAMPLES

1. If 4 and B are similarly but ‘unsymmetrically partitioned, with p par-
titions into row-groups snd v into column-groups, show that the produst AE is
symmeotrically partitioned sceording fo the i row-partitions of 4; and that B'4
is symmetrically partitioned according to the v column-groups of A,

2\,
Ls ‘
A & AB N\
% N
N
X 4= ; ,f’..
&/
~\
rd +
B A BA N
| ) —‘ 2 17
W
« ~ ‘x\

NN

'y

*
R
ON

7

2. Distinguish by examples betwoen 4 sé’mmctﬁca,l matrix and & symmetri-
cally partitioned mabrix. “< '
' x\ Ay Gz %3 ¥
a It P I:A \T'\j": Por Oag fag X ,
o N ap gy Gy g
o TN azu}"jix Uy Uy .
prove that = , >
[Note that zu is asegpuare matrix of order three, while uw is & soular of the first
order.] A\
.'\\ A1 oL,

RN T L .
4.0 4a=]. . ul--l=[- M ]
\ 3 ) J . . N

v .

a1 ' 1 -
whero L~ [ o= [ u]’ Ne=v (.1, v=0), find the valus
-of A%, AP, A=Y, and of any rational function f4) in terms of L, M, N,

.
[n general f{A)=[ R ]-]
Feay

<
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. the same order as B; the lower 7 has its origin

/

8 FUNDAMENTAL PROPERTIES [ HAP,
5. T, in the last example, L, M, N denote arbitrary square minor i rices,
#o that 4 is symmetrically partitioned, having zero minors overywhere « -cept

on the disgonal, show that f{4) takes the same form,
Generalize the result, noting that the orders of the diagonal minor w:irices
need not necessarily be equal.

a b p g
6. If .'A="’d;'f = ?f].
P | ~
where - B:[: 3 . P=|:iJ 3], I:[T I]’\:\
. '\
prove that A» — |:Bn %P} and that f(A)f(lE‘i(.}j] f(;?)—_:f} J”ir.
! R Hey

7. The last result holds for a general square winop B, a rectangular mivor P
of equal depth, and unit minor 7, [In the result the¥ oceurring in the fraction lias
ﬁ\:frder.]
N
7. Isolated Elements and Minors. P\

The non-zero element, g ofyan “ordina;ry matrix 4 will be said to
be isolated when all other elemeénts in its own row and columu :re
zero. It will be termed. sewit-dsolated when all other elements in either
168 0wn zow or its own golitnn are zero, These terms will also be used,
Wlth the necessary g]ié.nges, in speaking of submatrices Ay in a par-
titioned matriz. The problem of reducing mastrices to canonical form
Iesxizrgtely thatof ing out isolation and semi-isolation to its utmost

ng. NS

Thus, a0 Example 4 above, the three minor matrices are isolated,
and so/ithe element v, while the elements A, u are semi-isolated.
'_].‘hgsqe.ementfl of a diagonal matrix [ 8,] (ie. one in which a,, = 0,
L% %) are isolated: and evidently » is the maximum number of
~Oelemlen1ss that can be isolated in an n-rowed matrix, We shall see
.that‘any matrix can be transformed into a matrix admitting a

definite number m of isolated minors, where m << n.

. One or two‘elementar__")r examples may serve to prepare the way
or t]lle-_us-e of isolated minors ip dealing later with canonical forms.
First, i two square: matrices

- URe P and 4 of the same order have
smnilar and similarly isolated (or semi-isolated) diagonal minors, of

orders 7, g, ., » 80 also hag thejy product P4, For example,
if, - .' Pz[,Pn Pﬂl] A-—_—_[Ao A[ll
) - T Pl i . Al ?
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(17)

then i [POAO Pydy -+ Py AlJ

P4,
Here P, 4y, PyA, are all square and of order r, while P, 4, P4,
are square and of order 5. If both Py, and A, are zero, then Py, 4,
PyA, are isolated in their several matrices; and so are Py, 4,, P4,
Otherwise they are semi-isolated.

Or again, consider a product of three matrices such as the following:

N

po=[T AT [ 0T 6] -1 ma kS

For example, . \

1. . 3 a b 1. . 5 a biZa
[. I.J { “J [ HJ:{. 200 }
. —2 1 . 49 I | O 1

In this if 4y = [a, b] 5= 0, the diagonal elements\of PAQ are semi-
isolated; while if @, b both vanish the isolation j{completc. The point
of the example. lies in the fact that the mingr P40, is obtained
from the corresponding minors P,, 4,, @, exactly as the whole matrix
is from PAQ. Thus in a general casc further isolation might, perhaps
proceed within 4y, and lead step by 9&p) to the extreme stage of isola-
tion possible in transformations of «®

8. Historical Note.— Matrieés, considered as arrays of coefficients in
homogeneous linear transf ri@aﬁions, were of course tacitly in existence
long before Cayley in 185% proposed to develop their properties as a pure
algebra of multiple numbeér. But the intrinsic properties of the arrays
were not studied f({::t eit own sake; only as much information was
extracted in passing as would be useful for the application in hand, such
ag determina.nﬁ; co-ordinate geometry, and the like. Rectangular arrays,
too, had be{af:z well known from the time of the Binet-Cauchy theorem
(the Theorem of Corresponding Matrices, Invariants, p. 79), and had
found applications, for example in the normal equations of Least
- Squares, where the determinant is the row-by-row square of an array;
and they had also been used, when - premultiplied by a determinant,
to express a set of determinantal equalities. Hamilton’s quaternions
- (1843) can be regarded (Invariants, p. 166) as matrices of special form.
But Cayley may fairly be credited with founding the general theory
of matrices, for the same kind of reason as leads us to eredit Vander-
monde with the founding of determinants. Rectangular matrices with
integer elements were investigated by H. J. 8. Smith in 1861,

&
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for w variables #, in terms of the y,

CHAPTER II

BLEMENTARY TRANSFORMATIONS, BiLiwzar anp
QuaDraTic Forms ™\

Mony of the elementary transformations of detcrmi\ﬁa«rﬁs w frich
are used in their evaluation and in the solution of linear eguations vuLy
be.expressed in the notation of mabrices. a

"
%

1. The Solution of n Linear Equations in » Unjxﬁowns.
The n equations, of which the ith is

PN\
Z ayw; =y, =492 ...,4, . . . . (1
- 1 % 3

J=

i3

‘wid the n coefficients a,, are con-
veniently written as a single maprix equation
‘}:’2‘156=y....“,..(2)
I we.multiply both gides of this by a 8quare matrix P of the same
ordér as 4 we obtainPAdz = Py, In Particular if | 4| % 0 and 7
15 the reciprocal 0{\& “we have

e T=d3y N )]
which giym: e unique solution of (1) in summary fashion. Here
e single columns of » eleme

theyi*tkécom‘e_ single rows 2’ and y', while 4z becomes #'4’, so that the
RAMIE Squations can also be written A =y, In double-suffix notation

Ty= X atiy, i=12 ... &
Consideration of the identity

. 1 . a]l (312 alﬂ %1 am 623
REIRES Uz Gy “zai| = [a’u QG “13}
ECH &

B3 Oy g,

R R T S R I T TS R, SR
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shows that the effect of premultiplying by a unit matrix in which the
first two rows have been interchanged is to interchange those rows of
4. In general let 155 denote’a unit matrix in which the ith and Fth
rows have been interchanged without disturhing the remaining n— 2
rows. Hvidently th: effect of multiplying 4 by such a mathix will be:

154 : interchange row,, row,.
A I, interchangs col,, col, AR R )

Ly AT, : interchange both tows and eolumns % 4. _
It is to be observed that Iyt = I, since a second intereh:{n\g"e\
restores the unit matrix, and that J ‘win=1 (s LThe double Iintpz;change
thus belongs' to-each of two important classes of transformation,
{TAH-L and H'AH. ' R\ 2
‘More generally the rows, or columns, of a determifhant or matrix
may be deranged according to a-given permutatior{Q of (123...4),
such as = (afy...). The permutation Q of théyrows of 4. may be
effected by premultiplying by I, a matrix dexived from I by sub-
jecting the rows of I to the permutation Q)YThe same permutation
{2 may be impressed on the columns of @fby_ppstmultiplying by 7',
Since evidently I, I', = I, a permutationi? of rows and also of columns
of 4 belongs again to the types HABS and H'4H. . . | . (6)
The only matrices of the type~d, which are: axisymmetric are those
for which Qisa self-confugate. petmutation. (Cf. Muir, History of De-
terminants, I, p. 60, and & gariants, p. 29.)  Of thege again only two
arc persymmectric, one being I and the other an important matrix
with units in the secon{ldrgj diagonal, namely, e.g, -
o ...
& _ _ T :
,\\_ J = 1 B R I

&

¢

e o 1
Evidently J=J,J2 =1 The effect of J A4 18 t0 reverse the rows of
4, while that of AJ is to reverse the columns; so that JAJ, or JAJ =1,
or JJ'4J, completely reverses the matrix A, ' .
The operation of interchanging pairs of rows or columns of 4 wil.

be referred to in later sections ag an operation of Type I, -
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3. Linear Combination of Rows or Columns in a Determinant or *I.trix.

Congider again the identity

1. G &3 o5 a4y it a4y
[' 1 k] l:a‘zl ) aﬁs]= [ﬁ21+ka31 Gop + hagy gy | ooy

1 g gy gy gy Aa0 €y,

Premultiplication of A by a unit matrix supplemented by an wr{-mnnb
k in the indicated position has effected the Operation row, -\ ivw;.
More generally let ' (\)

H=]+ )y (i & 4) . O

N

d'i'nft];é (7)th posiiion;
N
H4: row,+ krow,,:' ’

AH: col; & colg

denote the unit matrix with an element 4 inserte
then we have readily "

{15)

. o\ :
To these may be added the following useful compositions involy-
(ing H and H-1, whioh are readily seen to satisfy the relations
H=It+M BY=1—-0); (Hj=1:
namely, N
H'AH: row; 4 b oWy, col; + A col,, :I
HAH:\, 10w, + & row,, col, — & col,.

The nofation }hx\used in aceordance with the convention in defer-
minants; the zow or column which i modified is written first, and the
operations Aré-performed in succession. (Invariants, p. 9.)

Operafions effectod by H, H’, or HA, g here described, will be
ﬁer@% later as of Type 1.

~ Transformations of the type PAQ, where | P and | Q| are cqual
- ML, are called wnimodadgr trensformations. The operations of
- \»\ A¥pes 1 and I involve unimodular transformationg,

4, Multiplic_ation of Rows or Columng,

I in Type 11 the element, 3

where 7 =& —1, we should have had H —
* Then, if1 4.3

HA: rowﬁ,]

'AHE k col,, (10)
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For example,

) @y By gy H1 G 4y
R oy oy Qoy | = k%] & sy k Bog |»
' . ]_ “31 asz ) a’33 ’ a'le a32 633

The special use of this type of transformation, which we shall eall
an operation of Type IIT, is in an application such as the following,
Let 4 be a diagonal matrix supplemented by non-zero elements in
the superdiagonal, and let it be required to transform 4 in such a way

- as to replace those elements by units. How that may be done is vigible,
af once, and generally, from an example such as N\

@t . 1A a .rah . . Al e\

T 0
T S S | RS

The transformation, though not unimodula

2 ;,\\1'15 again of the
important type HAH-L, with | H| =0 Qs
The various transformsations described in 82 3, and 4 are all of the
form _ : o\ o
PAQ = B, where | P9, Q)0

"W

P or @ being in several cases the unitatrix 7, and of course we must

also have A '
|P| |y @] =]B].
N\

Thua the elementary rulgs }f\or simplifying determinants (or for solving
linear simultaneous etn'lations by eliminations) may be regarded as
examples of matriz;\r{m tiplication.

o\
5. Linear TraxQﬂurination of Variables.

Let the j?i':variables %; which oceur in (2), he subjected to a linear
transforndation '
\ & &£y = -E_T_gﬁ 5,‘, ‘i‘—_ 1, 2, ce., R,

i=

where @ = [g,;] is non-singular, so that | @1 ==0. In matrix notation
we have

do=y, ©=Q¢ AQt=y. . . . . (3

In other words the effect of transforming the variables is equivalent
to postmultiplication of 4 by @, while the effect of Tearranging equa-
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tions, or combining them in the elementary familiar way, is cqiisaleng i
to premultiplication by matrices of the type P. In canonicui rdug- |
‘tion we ' shall have recourse to both methods of transfori 1on,
sometimes operating on the matrix iteelf, sometimes setting vy new
systems of variables, For example, if

_ _)t 1 . . 1 .
A:[. A 1]’ B.‘:[ . . 1 :l’ . {i,':]
ol A 332 3 \

We may prove in the following manner that there existsl hatey 11
such that HAH-L= B, As on p. 10, let there be\a systor- of

equations \
Az 4 =, =5 O
o\ ,
Aty - 25 = g7, N (t)
ALy == )
3 . . 3 xi&’
It how & and ¥ be transformed into & an‘&ﬁ by one and the same tr.1:-
formation H, given by o\
Z ' = 513.’{’" th = M
);fvl-H‘»s_ o= An+tg =M (- ()
)\ H + 2)(553""'?3’-‘::'53) }‘2 y1+ 2)" y2+y3: Mar

we have by simple substitution
. ¢ \J .

L\ 4 =,
£y == nz,] e e (15)
NO MG gy

The{rﬁ:trm of the' transformation lagg writter is B, and the whole
procg)\c{m-e, expressed in matrix notation, is as follows:
Ay; Haomg, Hy=n, | ] <1 Bé=n=Hdo—HAR¢. (1)

new variables,
H-1 may arise,
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bilinear form in two sets of n variables, to which 4 is ‘related just as
closely. If a column vector y defined by y= A=z be premultiplied by a
Tow vector u, we obtain a scalar expression

f=yy== udz= 3 Duayy .. . . (18)
i, j=1
This expression, of n? terms, homogeneous and linear in each of
the two sets of variables u and z, is called a bilinear Jorm, of matrix 4.

" "
It is occasionally written A{u, #). Since I Sz, @4 t; denotes exactly

5, =1 : . q
the-same double series of 2 terms, we have an alternative EXPression,
for the same bilinear form, with transposed matrix: O
' f=yuw =24 . . .. ON(19)

‘Bilinear forms can also arise from rectangular’ m X 4" matrices.
Thus if  has m elements while & has # elements, it ig ¢asily scen that -
uAw is then a bilinear form of mn terms, RN

The matrix of a bilinear form may of cour%‘;l}e a product PA¢,

in which case we must observe that X
UPAQE — f!@n‘A!’Pi{?}}:" . . | . .-_ . (20)
The inner product uy referred tg:i'ii. 'Ché,pter I is evidently the
special type of bilinear form which h@,gi,iér its matrix I, the unit watrix,

Al

Ezample. n = 2.

-
2 1 LS 2 . .
bt [ ] [2] S8 wam s [T ][]

We may distiuguisl:[ here between matriz Jactors and scalar factors
of'a form f. The mgtmx factors of the form wdz are u, 4, x, or again
7', A, w'. There@ay also exist scalar factors, such as (22, + x,)
in the emmp@above, but this is exceptional. Had we taken the
matrix tq\.bé[g 1:[ instead of [2 1], scalar factorization would not
have(béel possible., '

1f the two orderings ' 4’w’, udz of the form J are identical factor
by factor, then f becomes a quadratic form of order 7,

#

= py @iy T By, @i == &y e e . (21)
i, f=1

The two sets of variables coincide, and the mafrix A4 is éymmetrical_
Thus

(=ddv=a'd's, Ad=d. . (3



16 ELEMENTARY  TRANSFORMATIONS [Crap,

P BRI,

In f the coefficient of u,z; is a,, that of u;z, is ay;; in g these o equal, |

‘Hence the coefficient of 2 is a,; and that of =z, for  -I- o Zay

7. The Highest Commen Factor of Two Polynomials,

A further striking paraphrase in matrix notation of fmnili..l-.-lideas
-and processes is provided by the steps used in finding the iizhest

common factor (H.C.F.), whether of two integers in arithmdi . or of
two polynomials ¢(2) and (A} in algebra. For example, con- ir the

case of A%+ 2A% + 91+ 1 and 3N+ 8A2 4 9A + 4. Tfw{\ range -

the wozk in the usual two columus, omitting all but 't\lu:\ Nt -« ssive
" remainders, we obtain A\
' 284 208 4 23 4 1] 308 4 80 A A+ 4 |5
——1 YL DI 2§2T+’3A+1 1
| N a3
which leads to the H.C.F. X +1. AL

Now. these steps are nothing else tl{a;n\ a series of postmultipli ./ions

affecting a two-colummn matriz

4= [#® ¢(A)}=[A3+,2a§~+2>«+1 oo o)

~
C XY

namely,

coly — 3 coly, col, & %h coly, coly — 4 coly, col, + R(A - 2) coly
~\

H we denote thesé four steps

mlﬂtipﬁcatioq, “ith hon-

‘process is exhubited by the relation

N&

27 40000~ —P-3 |
A . .
_ 4dsth step,
..'ftﬁmtmulﬁp]ier Qy =
Qs = [1 ~|» yields the result

[4919293@4@5@.5:[“_‘1 ] @)

Since each element in the matrices Q. is either

a pplynpmiai in A, the continted product

Q= & Q,Q; A Q50

. (24)
for elements polynomials in A,

T s also a matrix having

» Which are of Type II, by matrix post- .
singular matrices @, Qs @y @, the whole :

of Type IIT, removes the factor —3, by affixing a further
__%]: end a sixth step, of Type I, with

2eT0, Or g constant, or
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We may draw two or three important conclusions. First, that a
matrix 4, of the type considered here, satisfies an identity

[ [ - [ e

where g(A) is the algebraic H.C.F. of the polynomials ¢ and . Secondly,

that the coefficient of the highest power of A which occurs in g(A) can

be taken to be unity. Thirdly, on performing the multiplication AQ,

that the matrix @, which is non-singular, is subject to the fundamental N

identity : - A '

' SNAAN) F A =g) . . .. @26
among the polynomials concerned, and—what proves to be.}p\fwless
importance--to the relation ¢(A)ga(A) 4 () g,(A) = 0. 'Ig'a:stl)%, that
after transposition there exists an analogous relation oS

o[22 0 10T e

We have purposely introduced fractional €defficients into the above
example to illostrate the fact. that the recess is rational, but not
necessarily integral in the original coeffigicnts of ¢ and . It is both
rational and integral in .. We couldgqually well have treated 4 as a
vector [, ] by suppressing itg;;seébnd row, which is null: with the
same syuare matrix § we sho{ul}i then have [$, ¢]Q = [g, 0].

\\ N/
<7 Exaverms
1. The quadm’gic\’f‘&ﬁi assoeiated with the unit matrix is

A N/ rr=gt e+ ..+ xR

2 S
2. Writedywn the guadratic and also the bilinesr form associated with the
diagonal mateix

'"\} W . :\1 . N
S U ]
e,
s
@AE =224 hom? + 2% wlz= T ]
i1
3. To what bilinesr form does 2 matrix A of order m X n belong?
if=wds =A% =% ¥ i gy g ]

i—1j=1

4. What is the quadratic form associated with the matrix J2
{(m420} 3
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5. The elements ¢, of the matrix 4 of a quadratic form quare § "7
. r _."r. _|‘J.
2
[The determinant 3 ¢ éf of & form f in # variables i enlled (/..  ritnlg,
& 0Ty

p. 222) the Hesstan of the form.]

8. If 4 is the matrix of a quadratic form, H'AH is tho matrix of Jnother
quadratic form,

. K A4 is the ﬁon-singu]ar matrix of a quadratic form, whose re iprocal
is 47, prove that the quadratic form can bo expressed as a deteringnt,

A4 a:'
s 0 *

g= —| 4] Q)

where & denotes the vector matrix of the variables, {Cf. Invarin n.'«;\}:\ Ty
1 . 1 -1 1 . 1 —-290% )
R4 b4 i 1
8 (13 63) I:-—I l:| I: 1] [—3 1] I: 1‘1 = 17 oL

8. Historical Note,—The process of successivé” residuation which
leads to the H.C.F. of two numbers ¢ and, s given by liuclil in
Book T, Propositions 1-8 of the Elements. In Proposition 33 he finls the
H.CF. of “as many numbers as we pleast”. Tn our next chapter we
shall see how H. J. 8. Smith made uslof this process, by arrangin: the
elements ¢, ¥, ..., whose H.C.F. i\t be found, in rows and eolimns.
As Smith points out,! his inmovatie
multiplier P, to reinfores the effeet of the postmultiplier Q in mod; fving

@ matrix 4, in the form R49. He credits Ganss with the @ factor.
(CL. Disq. Arith., § 9137214 i

the elements B3P (or Q) are integers, i
by- the zgeiprocal P (op @-1).

: Some writers confine the term
un.]modillar to the case when the

determinant of the matrix is

(Y Pl Trans,, 151 (1861), 203-26, Oollected Works, 1, 367406,




CHAPTER 1III
Thz Cavowicsr REDUCTION 0OF EQUIVALENT MATRICES

L. General Linear Transformation.

Suppose that the variables u and # of a bilinear form )
\S °
f=3 Swazg=uds . . . N\ (1)
=1 j=1 \

are subjected to separate non-singular linear transforma}tféns
m n :
Uy = _El’ff‘s Piss T = agﬁ & | pu| =+ QQ}«% |0 . (2

When these valnes of % and z are substituttlcﬁ in f the form becomes
a function of the », and & which is again bilinear. In matrix notation
we have )

w=eP, o=0Qf {40, [Q|+0;
| feude—oPAQE= B,  B=PAQ. . . @
Thus f has been tf&nsfon{{él:i%to a bilinear form

N Hi=3Zebgg, oL L @)
the matrix of whidi\“]:é ";1e1~ived from the original 4 by multiplication
on cither side:ié;};and ). The value of b, is E] El Piaop i

» a=1g=
Matrigqs'\)f the type PAQ constitute an important clags, which
will nowpbé considered.

L\ W
2. Puytivalent Matrices in a Field,

Definition.—The matriz A is equivalent in @ fidd F to the matrig
B if non-singular matrices P and Q erst such that B = PAQ, where
the elements of P, A, Q, and therefore of B, all belong to the field.

{t) The property of equivalence is symamnetrical: in other words,
by taking P and @ each to be the unit matrix I, we infer that 4 is
equivalent to itself. (i) The property is reciprocal: from B == PAQ

9 :
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we derive 4 = RBS, where B = P, 8=@ and hoth 7 :nd §
are non:singular. (iii) The property is fransitive; namely il .1 i oquiva.
lent to B, and B to C, then 4 is equivalent to ¢, For if 7 PAQ,
C= RBS, then € = RPAQS = P AQ,, where P, = RP, e Q8
and P, @, R, 8, P,, ¢, are all non-singular,

It to the above criteria, the symmetrical, the reciprocal. 1.0 the
transitive, we add—what has been tacit throughout —that ratrix
multiplication is associative, we have the necessary grounds for .:ilirm-
ing that equivalent matrices, in g given field, form » group. - N\ :

The concept of a number JSield, insisted on in the defigiitin of
equivalence, is latent in ail algebraical discussion. By s W 7 we
mean a class of two or more numbers such that if pand ¢ o any
members whatever, equal or unequal, then pL g ™p— g, ;i 7
P~ ¢ (g = 0) are also members of . To preseribe $he field is t. pre-
scribe some class of numbers which secures thegbove condition. Hor

eXample, a field ¥ may consist of the rationg) numbers, or acuin of
the real numbers, or again of the complex fational numbers, or ;uain

of the complex numbers, For our immediate purpose the conlition
means that we exclude root extractions, infinite operations aiu! the
like, and confine ourselves to qd&ition, subtraction, multiplicaiion,

and division (except by zero), earried out a finite number of times
upon the elements. The matrix A will be said to belong to a ficld F
if, and only if, all its elements belong to ¥,

Another important,goleept is that of g ring. A ring R is an as-
semblage of elemerﬁf\:p,’g, -+ +» such that p 4 ¢, P — ¢, pg belong to
R, multiplication, of* elements being associative and distributive. I
multiplication ig\also commutative, we speak of a commutatice ring.
For example, :ﬂue set of positive and negative integers and zero forms
a commpigﬁ?ve Tng; it is not o field. If the rng possesses a unit
eleme_m(whwh we may denote by 1, and if each element ¢ possesses
a_I‘?Elp}O(faI element b such that gf — ba =1, the ring is called a
dﬂ\ﬂs%(}n ring. A field is therefore 5 commutative division ra:nq.
- O\ A.common type of commutative ring in all algebraic discussion is

the ring of polynomials in an arbitrary variable A the coefficients
- helfmglng to some prescribed field F. Fo :
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3. The Equivalence of Matrices with Integer Elements,

A class of matrices of historical interest is that in which each
element belongs to the ring of positive or negative integers and zero.
It was shown by H. J. 8. Smith that such a matrix 4 could be reduced
by unimodular matrices P and Q to the diagonal matrix

K
Qg ...
PAQ= 1} - = | 0<r<n, . (5}
. . ree Oy Laa . 7 '\“\

L '\
L &

Q!

where the elements of P and @ also belong to the ring, :’i‘he.sct of r .

non-zero elements g, in the diagonal uniquely charaegeviees 4 and all
matrices HAK equivalent to 4 within the ring of Operations, It was
also proved by Smith that, provided the set «, serd-properly arranged,
each a; contained all its predecessors as factors, fhus: :

a=P w=Fby ..., o S5BR. B . )

4. Polynomials with Matrix Goeﬂieiengﬁ%’r"A-Matrices.

The theorem alluded to above;%ﬁ%é originally proved for matrices
with integer clements. 1t is, however, essentially related to the problem
of investigating the HCEF, mcii the elements, and more generally of
the minor determinants e given order, of a matrix 4; and we shall
establish it for the cafe where the elements of 4 are polynomials in
an arbitrary variable W, with cocfficients belonging to a prescribed
field . Matrices of this kind have already been considered on p- 16
of Chapter II",\’t}cy are called A-mairices, and may bo regarded as
polynoﬂals,®~ﬁ scalar variable but with matrix coeficients. For
example (\'

¢

1;}\ [2 1] 2[1 3}_{1-}2;\%-).2 142322
[.\2’ BRI A R A 9 ]

and in gencral we may have a A-matrix
Ay = Alp+ A2 L Ay . LD

It is sometimes advantageous to introduce another variable o in order
to make the expressions homogeneous, when the A-matrix A(}) is
replaced by a binary p-ic with matrix coefficients or, it we please, by
a single matrix A(A, u} of which each element is a scalar binary p-ic.
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5. The H.O.F. Process for Polynomials. N

at onee from the example

[1-—}-2?««}-?@ 1+A+3ABJ:[1 l]mf)d;\. (8)
A 2 8\

"N\

An aspect of the H.Q.F. process, from the standpeiﬂf: of inirices,
hag been considered on p. 16, We take the opporPunity of re:ording
here more fully for future reference the essentipl algebraic f-ntures -

of the process.

We begin with two polynomials ¢ (A} apndli(A), of degrees i and n,
a field F, and such _

where m < n, with scalar coefficients belonging to
that ¢(}) has unity for the coefficient.of'its highest power:
) = 2 — kL gams

“ i—Cp

By ordinary long division ofy
mainder are uniquely obsaing
terminating, all coeffigiénts in

to . We have t{@.’
) A = g $(X) 4 #(N),

"¢/
where the quotient g(A) is of degree 5 —
of dg,ﬂftnecessarﬂy less than m. If ¢ is a factor of s then 7 is zero.

d: and since the process is rational and

N &)

% ' REDUCTION OF EQUIVALENT MATRICES |Crap.

¥ by ¢ a polynomial quotient and re- |

the quotient and remainder belong also ;

PRI

;

* The notation of congruence with respect to a modulus can also be

. usefully applied to matrices. Thus the statement # (' mod A
" will'be taken to mean that each element of the matrix /- s
zero. or else contains A as a factor. The notation will Lo understood °

m, and the remainder r(A)

A by continuing according to Euclid’s algorithm, the ratio
E ) o last ¢

18 expressed as a continued fraction

e e , the last convergent,
A/ EQ), providing the identity °

YORX) - saNy = gny, . . . (10)

where g(}) is the algebraic H.C.F, of ¢(A) and
B. 16, and all five expressions ¢, . 3 L

, : +h
coeflicients belonging to ¥, 1y, g are polynomials wi

(), asin § 7, (26), of 4

( 18 usually convenient, o divide h k%, g
thro_ughout by the coefficient of the highest power of A in g; the co- -

algebraically prime to each

the field ¥, and the alge-

I
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The procedure and results just given can be transferred at once
to the case of polynomials in a matrix 4 with scalar coefficients. (These
are to be distinguished from A-matrices, which are polynomials in a
scalar A with matriz coefficients.) For s square matrix 4 is permutable
in multiplication with powers 4% of itself, and it follows at once that
scalar polynomials in 4 obey the commutative law of multiplication
and so form a commutative ring. Hence we have results correspond-
ing to (9) and {10) above:

pld)y=A" —gAmL — g gm2 | — cmf,l
h(d) = q(d)d(4) + r(4), R4 Y
$(A)k(4) — s(A)h(4) = g(4). ] >

P |

QY

ack of the identities {11} can also be interpreted as n2 :s;zale;r identi-
ties, nsually of 2 more complicated kind, referring t@:}he equality of
pairs of corresponding elements in the matrices om\either side.
Y
Erample—Tf $(d) = A*—244-1, (A) =B 4421 64— 3],
then gldy=A—1I, Md)y= 42D k(4) = L.

6. Smith’s Canoniecal Form for Equgvjaiéﬁt Matrices.

Theorem L—Bvery A-matriz of Order 1 and rank  can be reduced
by rational transformations to the equivalent diagonal form contwining
exactly T isolated elements,
0N
QB

D= PAO— ‘:,:;.'. e e e e e .
¢ 2o e B L

»0<<r<{n, (12)
4O M

whereC T = 8 BN =838, ..., BN =85,...5, ech s,
bébag) unity or & non-zero polynomial in X having unity for coefficient
of #s highest power and having all its coefficients in the field F.

The proof of this theorem will be gradational, and will consist in
operating successively on 4 with A-matrices P, and @, so chosen
that the matrices PyAQ,, PP AQ,0,, ... assume more and more
the diagonal agpeet. The operations used will be exelusively of the
Types I, 11, and IIT of Chapter II. Part of the work is really implicit

in § 7, p. 16, but we shall describe it in full.
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Proof —If A is the null matrix, it is already in canonicad I with
r = 0. Ifit is not, there will be at least one non-zero elemeni ! lowest
degree in A. Let this be a,,; then the interchange 7, o1/, v i }n"ing
@;; to the position a);. This, the first step, 18 carried out by an operation

of Type I. 'We now refer to the former Qg a8 dyy.

Next, the elements of the first row, with the exception of o, may °

all be zero. If this is not so, there will be an ;= 0, Lel 11 !nnly-
nomial a;; be divided by a,,, yi.elding a quoticnt ¢, y and a rens ndler
*15» Which are also polynomials in A. By the operation enl, "\, eol,

the element a; is replaced by ry;, which is either zero of W lower
degree than ay;. The operations must end, sinee each P {0 hat s
taken as a new ay, is of lower degree then its predecessady «Tn it Litter

case the first step (the Interchange) may be repeatesiy niul in - lnite
number (less than p) of such combined steps the\rémainders .o ox-
hausted and a,, is replaced by zero, We can apply this process in turn

to all the elements of the first row. In the{cnd they arc all rp.iaced

by zero, except ;. In a similar way ﬁj(now clear the first «uinmm,
- then the first row again, and so
* row and first column, except @y, is zerw,

Thirdly, if there still remain angiélement a;; 10t exactly divisibic by
¢y, we shall have a,, 420, g, =a,,=0, @i =g,y @y + 745 where #,, =0,
Then the operations col; -+ gy col,, TOW;~—row, replace a;; by 7,, at the

expense of introducing —a,and g,,, at the Places {7, 1) and (1, j). ilad
7y been zero no advantage would have been gained by this step, for the
removal of the intrédnced @ would merely have restored the former
sitnation, causing 4 perpetual check *
the second follaws and, if necessary,
the third js found unnecess
¢ will hedivisible by a;,
'S B .

.:'.,14‘1@1 = I: A :’, B =0, Ay =0 mod Bi. . (13)
N\ - Apy

We can now write 4y, = BB, where B
order. A similar course of )

the third, and so on, until at last
ary; unnecessary hecause eVery nou-zero
= B;. At this stage 4 has been reduced to

77N

perations brings B, to the equivalent form
P,B,Q, — [B2 : ]
- BB,

where B, is_a A-mafrix of order (% — 2). Hence

[1 132] [ﬁfi 5131] [1 Q-J - [f?l 31;32 J (14)

B\BB,

on, amfil every element in the first °

.} Now the first step applies avain, |

1 18 & A-matrix of the (n— 1)th

e mapes s e s

3
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So the rednction proceeds until cither the ath row is reached or
else after an carlier rth row the minor matrix B, is null. Finally if
b; is the coefficient of the highest power of A in the non-zero poly-
noraial B, then b; &= 0 and we write 8,= #,8,. By operations of Type
ITT we may divide the sth row by b, for each .

. The reduced matrix is now in the form D; and sinec all the opera-
tions used have been of Types I, II, or III we have PAQ = D, with
| P| =0, | @|==0. The proof is therefore complete.

7. The H.C.F. of #2-rowed Minors! of a A-Matrix. O\
The leading element ,(A) of the canonical form D = PAQ)s the
H.CF. of the elements of 4, or of D. This is a special cagegf a more
general theorem regarding the H.C.F. of the m-rowed Mainors of 4,
or of D. NN
Theorem IL—The product G, (A) = El(/\}Ea\().‘) VLB () is the
" H.CE. of all the m-rowed minor determinants of T tnd alse of A.
Proof —Fivery non-zero minor of ordeg m}n D is a product of m
diagonal elements By (A), Bp (A), ..., EyfA). The suffixes may be
faken in ascending order and obvicusly satisfy the conditions &, >1,
by »2,..., by >»m. Hence Gp(APis a common factor of all the
m-rowed minors; and it is the highest common factor,
To prove the second par(of the theorem, consider the actual re-
lation o)
.
|- |-n
"\'\ . v el
\% >

ad
&

Sipec P and @ are products of matrices of the Types I, I1, and TIT, the
determinants | #| and | Q| are products of non-zero constants—units
in cases I and IT, factors ; in case III. Hence | P| and | @[ arc inde-
pendent of A. It follows at once that $he reciprocal matrices P-1 and
¢! are A-matrices in the field, with determinants independent of A

Now, by the Binet-Cauchy theoremr (Theorem of Corresponding
Matrices) any m-rowed minor of P4 Js a lincar tunction of the -
rowed minors of 4. For example (cof. Invariants, p. 81),

% For the rest of this chapter “ minor ” will mean * minor determinant ™,
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e @ b oo VR
if Az(% by Csz, P=[9’1 T2 ?:1:‘»
ag by ¢ 1 73
(pa) (pd) (pe)
then P4 = [(qa) () (QG)J o (pa) = X0
{(ra) (rb) (re) )
L by |
and if {pq),; denotes P9~ 49;, then the two-rowed minor |~{?{V S ()
sequalto Z (pg),(ab),, for i, i=23%311,°2 thateiyh it equal
iLf 3

4

o a linear f]l__nction of minors (ab)y; of 4. £

For the same TEeason,

every m-rowed minor SEYPAQ is o linear

funetion of m-rowed minors of 4. Hence ovefy common fact.r. in- '_
cluding the H.G.F., of the m-rowed minors W4 is a factor i cach .
m-rowed minor of D; and since 4 — PIDO, the same is tru- with
D and 4 interchanged. Hence the mcrewed minors of each Luve the .

same H.CF,, namely @, (

8. Equivalent A-Matrices,

A). \

-l

In using the word egqua}em in the course of the preceding deinon-

strations we have antigipated the formal definition of equivalent

Tw? A-matrices *\md ‘B are said to be equivalent in the field F when
A-mairices P and™Q euist i the field, such that theiy determinants | P |

and | Q| are noR-zero and
The definition inel

e gr

independent of X, and such that B — PAQ.

: ~e udes the definition of equivalence of p, 19, which -
f"hﬂo“’g}' taking elements all of zero degree in A. It also entails all ‘_
£ z N A

Ul the equivalents of 4. and the question
18 unique or not, It ig a remarkable fact that
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m-rowed minors. By Theorem I, the matrix B has its own canonical
form of diagonal elements, say E,"(X), Ey'(A), ... .- It follows that

BY(NEY(X) ... B,/ (N =6, (N=Cn(A)=E( Q) E4 (A} ... En(A), (15)

form=1, 2, ..., 7, and By ,(X) = B ;(A) = 0. Taking the values of
m in snccession we {(nd E;(A) = E,(A), so that 4 and B have an
identical canonical form D).

4, Observations on the Theorems. : A~

We have arrived at an integer ¢ (0 <C # < n} which is invariant for
all cquivalent transformations of a matrix 4. We have also obfashed
4 unique sequence of r non-zero polynemials E;{A) cach of (which is
a factor of all its successors and has unity for cocfficient ofits highest
power of A

The numbcr # is the rank (Im;amants p. 73} of the t:anomcal Inatrix
D and all its equwalents for @,.(A) is 3 non-zerQMminor of the rth
order in D, while every minor of higher order 13\?\%0 and this defines
the rank of D. As an alternative and eqﬂwalcnt test, D contains
exactly 7 rows (or columns) and no more which are lincarly 1ndepen-
dent (see Chapter V) in the field ¥. Sihce each m-rowed minor of 4 is
a lincar combination of m-rowed mmorq of D, the matrix A satisfics
the same condition: so that itg Fank is also 7.

It is to be noted that the polynomlals E{}) are rational, though
not necessarily integral, fnetions of the elements of 4; they are
polynomial invariants fo x aﬁﬂ matrices equivalent to 4 within the ring.
They have been calléd the énvariant factors of 4.

As for the matnioes’P and ¢ which appear in the reduced form P A4Q,
we have not prove?l thaj they are unique. Evidently they are not, for
if K be any moppsingular diagonal matrix of the order of 4, it is eagy
to see thatQKPAQK—l is identical with PAQ. More genera]ly if 4 is of
rank ,.$fte principal submatrix of K formed by the first 7 rows and
colupms can be purely diagonal, while that formed by the last n —r
cn be entirely arbitrary, except in so far as K is to be non-singular,

The relationship of Theorems II and IIT to Theorem I is best re-
garded from the standpoint of compound matrices. (Invariants, p. 87.)

If the (:;) X (:’1) minors of the mth order in 4 be arranged in a square

of (:;) rows and columns, priority of location in these being decided

by the priority of the rows and columns from which the minors are
taken (the order of row-groups being thus the same as for column-
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groups), the matrix so derived is called the mth compound of 4 anyl
may be denoted by 4™ T generalized multiplication theorem ol
determinantal arrays, found simultaneously and independently by
Cauchy and Binet in 1812, is then co-extensive with the important
theorem,

[4BC .. KIm — gompom K (16}

that is, the mh compownd of the product of & number of matrices of the
same order is element for element tdentical with the product of the i,
compounds of the several matrices. When this is applied to Thegrem 1
we have at once P g(m @ = D™ where the deterﬂnmit%“{ Pl
aad [ Q) by Sylvester’s theorem op compound deberminanis

{Invariants, P- 87), are the (:;: Dth powers of | P| and IQI and arc
thus non-singular and independent of ), A consiéfér\ation of the form
of the diagonal matriz pom makes Theorems Nand 717 mmmediately
apparent. Here, as in go many other contexts, it is Hluminating to
think of typical Properties and transforniations of deterrainants or
matrices as boing reflected at the same e by similar features in all
their compounds, The remarkable, maturity, considering the early
date, of Cauchy’s great memoir of 1812 is in great measure due to the
fact that he envisaged with an, artay all jtg < systemes dérivds *, that
Is, its compound matrices, ™

A matrix in F with corstant elementg @ can be reduced by opera-
tions in F 1o PAQ = B Swhere each a, is a unjt element, For we
might regard thig as"“the reduction of 4 - ) for the case A == 0,
Evidently, gince |2} and | @] are constants, P and § remain non-
singular when D=0, Thus we gee that the rank 7 of p (possibly lower
than the ranlegf’s — )7 ) s invarians, in that 4]) matrices equivalent
to 4 in F Kawé rank ., :

ek

N EXAMPLES
'1\’R:éduce to equivalont ¢anonical fory,
0\’ 1+(1+M(1_“P) I 32 ) Y
N\ A::[ 1— (T~ 2)(1— 5 (1—7\)(1=:w)].
L1k 0 —ay 1— 38 21 — 23)
B =1L B0y =1 x, g (=L~ a— gy
I 2
2 4= [ ;1 li ;g ] Reduce 4 1o Canonical form p — PAQ, where the

elements of p ¢ and the diagonal mgipig D azo ;

£ aro integers op EET0, und [P = | ()= ],
The opera-tlons_ of Types_ LI, my M2y be used, bt & in Type ]i_'[ Il;lus]th:!e an
Integer, and f iy Type IIT (p- 13) must be +1.
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10. The Singular Case of #2 Linear Equations in #2 Variables,

The caze of n linear equations in % variables with non-singular
matriz has been considered on p. 10. When the matrix is singular
the yocthod there given cannot be employed; but a parametric golu-
tion can be arrived at by the aid of the canonical form D — PA4g,

Consider the n linear cquations given by Aw == g, where |4]|=0,
and snppose that an equivalent canonical form D= PAQ has been
foundd, with r non-zero consecutive diagonal elements oy, ay, ..
a,, all rational in the coefficients a;. P and § are non-singular, and
belong to the same field as the a,;. Let Q- be caleulated, aqd\l(‘:t.\?a
new variables €; be introduced through the lincar relations « O

&= @1z, LRI 'a.(:‘ {I7)

Since 4¢ =y, we have P4z = Py and hence 2

= = PAQQ = PAx \Py.
D¢ = PAQ¢= PAQQ s = PAz Py

In the cyuation Df = Iy the Ieft-hand merfber D¢ consists of a
column of » non-zero clements o, £, agls, - Ve, g, followed by #n— 17
zeros; the right-hand member Py dendted”a single column matrix
consisting of n homogencous linear M§ti6ns of the y,, the coefficients .
in these being the elements of the JeSpective rows of P.

The equation Df= Fy can.eviflently be solved for the & if the
last 0 — 1 elements of the cobuglavmatriz 7 = Py are zevo.  If this is so,
we have a,&, = 7, g &y =Q?z:’ - w5 0, = 7, which give £ = »,/a,
The remaining # — 7 ot;a}e ¢; may be arbitrary: they do not affect
the valne of Dg. Sineend == QF, each #; is therefore a linear function
of all the &, with corffcients in F.

We see then\'ﬁlé,t the gencral solution for the =z, subject to the
- condition ingfsted upon in the preceding paragraph, involves exactly
%~ parawleters £, ., ..., £, for all other expressions used in the
argumepthave been obtained by rational steps involving only the
n® eléiinits ¢,; and the # variables ;. Since P and @ are non-singular,
each 8tep of the argument is reversible.

If any of the last # — 7 clements Yy+¢ 18 NON-ZeTO DO solution exists,
and the original equations are said to be tncompatible. For example

z At g=1, 2+ 2= 2.

We may put the condition of compatibility in a more general form
by considering the augmented matrix

C=[dy] .. ... .. (8
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of % rows and a 4 1 columns, the ith row being a,, Bigy - tts0 Yyt
namely

The n non-homogeneous Vnear equations Ax =y are cotrpedidie: and
soluble in terms of n—r arbutrary parameters, of and only of the rank
of G, the augmented matrix, is equal to 1, thay of A.

Proof —Consider the identity

Pi4, [ @ =rdary e

¢S
the matrices on the left being of order # % mX (n+1), (n-HIR +1)
respectively, The matrix product is therefore equal to D, +), a
matzix of order n x (% + 1), the rank of which must{be)r at tonst,
simce one of ifs p-rowed minors (included in D) isﬁ{h’e’ non-zere pro-
duct aya, . . . g, Further, its rank can only exved 7 if at least one
element Mre4 (22> 0) in the last 5 — rows &Qd the final colin is
non-zero. If this is not so, then the rank is #25

But @ is non-singular; sg therefore.is) Q 1 » Bince its duter-

minant is equal to | @ |. Hence the ranl of [4, y1, sinee it is unaltered
by multiplieation with non-singulad, matrices (ef. Imvariants, p. 84),
is that of [D, 4]. Hence finallyws, and only if, the matrices ¢’ and A4
bave the same rank 7, the last; n—r elements of Py are zero, and the
equations Az = y are co;r:u]ssat-ible and Parametrically soluble,

L\
1 Ifris thg ::?»ﬁk of [g g] which is partitioned {nte r+serowsandr 4+ ¢

columns, vghe\ire- 4isa non-singular r x matrix, prove that D =048 Prove
also the ednverss.

%[io?jo vl DB -1 5] e

EXAMPLES

2 Xz and § are column vectors esep of r components angd % and £ are such
with & components, show that, the equations

Az 4 By — 3, Cz - Dy —
fozi @ j;,nd ¥ are compatible, for the above matrix coefficients 4, g ¢ p if and
only
Bolve the equations,

m=A1p A~iBy, giving the ¢ in terms of ¢ PRrameters o ]
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11. Historical Note.—Sylvester in 1851 and Cayley i 1854 had
classificd some families of quadrics by invariant factors into all pos-
sible cancnical types. The diagonal canonical form D was found for
a matriz of mbegers by H. J. 8. Smith in 1861, as already mentioned.
The invariant properties and the divisibility of each E, by its pre-
decessors were demonstrated, and the arbitrary nature of P and
was explicitly stated; the last-named fact was proved in a later
paper of 1873. The extension to A-matrices was carried out by Tro-
benius in 1878, Weierstrags, in 1868, in considering the simultaneous
transformation of families of bilinear forms, had established the jn—\
variance of a set of polynomials closely related to E,(A) whick\}s
named Elementartheiler, a term taken over later by Frobenins, in’the
sense of “ invariant factor *, as we have defined it. The relag{siéh‘of the
original Elementartheiler to the invariant factors E‘,—()ll‘\wi]l be -con-
sidered in a later chapter. \;

An exeellent account of the development of the hedbry of invariant
factors, from the standpoiné of determinants, is $6bé found in Muir's
History, TV, pp. 435-453. Full references areifiere given. .

The respective claims of Binet and Cdgehy to the generalized
multiplication theorem of determinants are discnssed at length by
Muir, History, [, pp. 123-130. One waysof putting the matter seems
to be that the equivalent of Cauchy’s'eentribution is simply (16) above,
all the matrices concerned beingsquare, while that of Binet is (16),
with matrices of order alterrg@tély m X n and » X m. The extension
of (16} to generally conforﬁ\ﬁble matrices ineludes both.

The proof of (16) for(the case of two matrices [PA]®) — Pim) gém)
bas virtually been givel on p. 26. The equality of the ijth elements
on the left and rig}it. of this identity is a direct consequence of the
Binet-Canchy Thadrem (Invariants, p. 81). The proof for the case
of three or mgre™follows immediately from that of two matrices.

- The treapmient and results in the Theorems I, II, and IIT evi-
denﬂ%&pﬁly:, with the slightest modification, to rectangular as well
- 88 to“sgMare matrices.



CHAPTER IV
SurcrOUPS OF THE GROUP OF EQUIVALENT TranNsFORM AT Ns

In the remaining part of this survey we shall congider p:{l}'"}?l:zi':-ices
having elements which are either constant numbers, realor complex,
or are at the most linear in X. At the same time we ¥hall impose on
the matrices P and § in an equivalent transforreddion PAQ various
restrictions, giving rise to several different sibgroups, all of some
mmportance, within the equivalent group. Twd of these STDETOUPS,
characterized by H'AH and HAH -, haﬁ?t}'been touched upon in
earlier sections, N\

Certain of these transformations ape intimately associated with
special types of square matrix 4, 8§ for example the orthogonal trans-
formation associated with awisyminelric matrices, the untiary trans-
formation with Hermation, matrices, and so on. We proceed to define
these special matrices and 13 show how inevitably they arise when
matrix operations, and{the types of matrix which preserve their

£

type under these n%{aﬁonﬁ, are systematically olassified.

L. Mairices of,,S;ieciaI Type, Symmetrie, Orthogonal, &e.

~ To the op’g?ations upon 4 expressed by A’ and A7, ag alveady

fleﬁned byl Tanspogition and inversion, we may add another, A,

‘IﬂPIy:}.@ that if - the elements of*4 gre complex scalars the correspond-
iilg.tﬂpments of 4 are their respective complex conjugates. The matrix
A naturally called the conjugate of A, while 4°
\ }ugatfe, 15 called the associate (begleitende) of 4. We have then four
- principal Operations, — 4, A, 4, and Z, each of which has the re-

flexive property, in that when performed twice it reproduces the.
origimal matrix 4:

A=A, Ay=d, 4y Fo g (1)

{In the algebrs, of complex

° 2 sealats there are three operations only,
—% 67, and 4.) Moreover,

a5 may readily be verified, any two of
32
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the four opc,m‘cions say T, and T, are permmable, in that we have
I 7,.4=T,T, . A Ttis well to note in passing, however, that while
ihe reversal 1&\& Tholds for transposition and reclpromtmn of produets,
ifi ix not required for conjugation:

(ABY = B'A’, (AB)y1=B4- but (dB)= A4 B. (2

When due regard is paid to the permutable property, we have in
ait 2% matrices derived from 4 by combining the four operations in all
:thle ways, the sixteen related matrices being +4, A", LAY
AT, A7, A1, (A}, These are in general all distinet,
) particalar cases two or more of them may be identieal, a:nd it
interesting to observe that by identifying 4 with mrloas “other
crs of the set we obtain most of the important spémal types
watrices.  Excluding trivial cases (for example, 1f“s<l‘— -4 the
HLE 1’“1*{ A can only be null}, we may note the following!

(1) If 4= 4, A 18 symmetric. ‘éﬁfé’ Bgp.)

)
(ii') Iftd=47 A is inwolubory,X "\
(iif) Bt 4 = 4, A 18 real. (armf s real for all 4, 7.)
(iv) HA=1(4)1, Ais mk@gmz g
(v) H A= 4" Ai is H@.}mman (2 = @5.)
(vi) If 4 = (4")~ A\ls unstary.

The type 4 = A-1, WE\Li&l does not appear in the above list, seems
~ up to the present to haye found no application and to have received
no special name. When we take into account the negative operation
we derive furthea:"ﬁvpes, of which only three are of importance:

(vii) If \: — A’ Ais skew symmelric or allernate, (@, = 0,
@js = —0y;.)
Qiu'j)“\IfA = —-A_, A is pure @maqma/ry -(ay; is pure imaginary
for all €, 4.}
(ix) If 4= —4" A is skew Hermitian, or Hermitian aliernate.
(@ = —05.)

EXAMPLES
: 1 i 144 .
1. The matrix —i 2 1 - | is Hermitian,
1—¢ 1 3
[E420) ' _ 4



- then each of the sixteen alliedy

A

34  EQUIVALENT TRANSFORMATIONS ey
2. Tf 4 is any matrix, 4’4 is symmetric, and 4’4 is Hermitian,
[(4’AY = 47(4’Y = 4'4: slso T4 = (X' Ay ]

8. The matrix Q = }(d 4 4) is symmetrio, whilo § = $(4 — ") i+ skew

gymmetric. Thus any square matrix 4 may be resolved into the sum o . sym-
metric and a skew symmetric matrix, @ + 5. In the same Woy any -quare
matriz of complex elements is the sum of & Hermitian and a skew 1. -.itian
madtrix,

4. All intogral powers of a symmetric matrix are symmetric. Positi, a/odd
powers of a skew symmetric matrix are akew gymmetrie, positive even -Wivers
are symmefric. Fxtend this fo Hermitian matrices, X

N\

5. A skew symmetric matrix of odd order is singular. Prove thig, and . duce
that the reciprocal of a skew symmetric matrix of even order is sKew gy otric,

6. X d= A4 and A= X - i¥, prove that X7 — ¥Xx, :éu;d Xe4 y-=1L
&

7. The algebraic propertiez of pairs of matrices of the)sccond order < the
type | @ _b], [ ¢ b] are in correspondence qith those of the cruplex
b e -b u 79 .\

gealars ¢ 4 b, @ — b,

S

A\
8. The continued product [z, 1] [a z:l I};J ‘i equal to the complex scalar
L]

st biteitd Ife=gy %, 2= w3 4y, the scalar is Teal if, and only if,
the metrix [‘-‘ b
¢

d] iy Hermitian. (A bilinear form in conjugate complex
variables, with Hermitisn matrix;fib’rea,l, and ig called a Hermitian Jorm.]

8. Prove that if 4 belong(;blo sny one of the special types described wbhove
) matrices is of the same type.

\\

2. Azisymmetric, Hermitian, Orthogonal, and Unitary Matrices.

) : s

The real Misymmetric (briefly * symmetric ) type is a special
case of the Hermitian. Thus it 4 — ¥ + ¢Y is Hermitian, all the
clementg\ofX and ¥ being real, we must have X’ +4Y =X — Y,
50 thaﬁ ! =X, ¥Y'=—Y. Thus the real part of the Hermitian
mathx 4 5 symmefric, the imaginary part skew symmetric: or
A g + zS’, where Q is real symmetric, § is real skew symmetric.
Hence if 4 18 purely real it must be Symmetric; on the other hand
& complex axisymmetric matrix is not Hermitian,

In a similar manner the real orth

‘the unitary, For in the latter caseif 4 — X + i¥ then 4’ = X' — iV,
and 50 e have (X' — ¥7y(x 4 Y)=1 Tf ¥Y=0 then ¥' =0
and X'X = I & relation which defines the rea) orthogonal ease. The
complexl orthogonal case is o be distinguished from the unitary.

The ‘unitary and the orthogonal types Possess group properties.
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For if .} snd B are both unitary, then A4 = B'B=1, and g0 by the
reversni and the associative laws,

(ABYAB= BA'AB = BF(A’A)B=BB=1 . (3

Hence .12 is also unitary. Similarly if 4 and B are orthogonal so is

AB. Tt the rec1pr0cals of these types are respectively of the same .
type waa set for proof in Example 9 above.
EXAMPLES - .
: ¢SO
1 T ateix | 0088 51“3] is orthogonal, A
—sin€ cosb - .\
2. The matrix 1/v3 A +d)/v3 is unitary. R ~N

(1—d)jv3 —1/v3
3. Thz determinant of an orthogonal matrix has one orf o’ﬁlﬁr of the values

4, The modulus of the determinant of a unitary m;:e’siix'ls unity.
3. Special Subgroups of the Group of Eq’ui'valent Transformations.

The more important fypes of qurvalent trangformation PA¢ azre
the foliowing: O8N

i) The Oolhmatory Subgroup

If PQ =1, Wemaywrltéﬁ’ H Q=H|H| :]:0 The trans-
formation so derived, HAH, is of outstanding importance in the
pure theory of matrices, For if ¢ is a positive integer we have

(HAH-Y = BAH-HAH . .  HAH

R — HAIAI .. . AH? = HAHA. . (4)

Also, by the\\réversaz law, (HAH-1)* = HA-'H-Y, provided that 4 is
non-singilar. It follows without difficulty from these-two properties
th"‘*{’f‘i:f“ (4) is a rational function of 4 with scalar coeflicients then

FHAEY=HfHHEL. . . . . . )

The importance of investigating a canonical form for this transfor-
mation is now evident; for once we are in possession of such a form
B= HAH-1, preferably diagonal, or nearly so, then the properties of
Jliﬂagrix functions f(4) can be studied by way of the simpler forms
(B).
The transformation HAH-!, which for geometrical reasons to be
set forth later will be called the transformation of similarity, or
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the. collineatory transformation, possesses group propertics. 1.1,
B= HAH?, C = KBK-, |H[ 0, |K]|-:o0.

Then '

C— RHAH K- = §4S-L, where S — KH. |S|=|K[1 1] : o

Thus similarity is a transitive property. When B = HAII-, /i is
termed the transform of 4 by H.
Y ~
(i) T%e Congruent Subgroup .
~ )

If P= ¢, we have the congruent or correlatory subgronpeJ7 (],
| # | == 0. Here again the transitive property holds, for if B /i /1,
U= K'BK, then C = K’H'AHK — S48, where §=HE) | 8 | = O

AV
(i) The Congunciive Subgroyp\)

The matrices here considered have complexelements, and P = ¢',
1@+ 0. The subgroup so derived, B=HHAH, |H| £0, is colled -
the conjuﬂ@e_ subgroup of the complex wroup. If C= K BK . we
have O = K'IVARK — 8’48, where § = HE, | §] = 0; so that the
fransitive property again holds. N

Evidently the conjunctive Tfmansformation is an extension of the
congruent transformation, ingo Which it merges in the case of real
matrices. K '
(iv)sl’}fe Orthogonal Subgroup

A transformatiop\which is a the same time collineatory and con-
gruent is said to (e orthogonal. In this cage PQ=1 P— (. We
have therefore{ jhe transformation B = H'AH, where H' — # -1
[H| <+ 0.\:T~E;B transitive property is readily verified.

QY .
N {v) The Unitary Subgroup
’,,\Ii'} (m' taking the complex analogue of the orthogonal case above,
“We jcombine the collineatory and the sonjunctive conditions, we have
the unitmy_subgmup. In this ecase B = HAH, 7 — H | H|+0
.The transitive property is again easily verified,

EXAMPLES

1. The congrnent transforms of a g i i i
ymmetric matrix are symmetric, Hence
the orthogonal transforms of symmetri matrices are aymmcg"ji]c].

2. The conjunctive transforms of iti i it
! ; an Hermitian matrix are Hermitian. Henge
the unitary fransforms of Hermitian magriceg are Hermitiap,
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3. The congruent transforms of a sLew gymmetric matrix are skew sym.

metiio

&, T.ho conjunctive transforms of & skew Hermitian matrix are skew
Hermidian,

4, #uadratic and Bilinear Forms Associated with the Smhbgroups.
fach of the above subgroups owes much of its importance to the
fact that it is closely conneeted with a certain bilinear or quadratic
formi. In § 1 of Chapter III we saw that the main equivalent group
came intc view through a consideration of linear {ransformatio
i, = Q& which were independent of each other. The sets\of
u, and z; were supposed to belong to distinct realmé NIn
v his 18 by no means the common case: and one must(Cohsider
types of relation which may subsist between the Varla.b]es

il talke them in order.

Wo shel

4 ’\

AN
(i} Contragredient Variables. The Colligeation
Lot #, @ denote the two sets of n vanables LtM‘,he bilinear form

f—-—qu—E ufaﬂﬂ:,\ N ()]

x;—l

Let & new bilinear form v HAH- y be ‘derived from f by the linear
transiormations

w=vH, "z:II—l, |H|0. . . . . (O

Such variables u, 2, blnﬁ& “they undergo opposite transformations,
are said to be confragn chE and the equation J=udz = 0 belongs
to a collineation. (See P. 40, énfra.) I6is this bilinear form f which
I3 assovinted with the collineatory suhgroup.

From (7) it foIInws at once that wr = vy; in other words, that the
inner produckal® = Su,z; is an absolule invariant of the collineatory
group, bei%'e'xa,cﬂy equal to the same function of the fransformed
variablegh \ Briefly, we shall say that wx is lafent in the group. Con- -
verselyy When uz = vy identically, the variables # and z are contra-
glqik‘nt for if in general we have wdz = vPAQy, so that v = P,
2 =="Qy, and if further wr = vy identically, then vPQy = vy and so
Py =1, (Cf Invariants, p. 148.)

(i) Cogredient Variables, The Correlation

Suppose on the other hand that we make the variables z, ¢ in a
bilincar form
Te=yde=Syam, . . . . . (8

hF
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andergo the same transformation: let us say = I¢, y-- ti;. Then

VA= (Hn)A(H) = yH'AH¢ = 4BE, . (9)
where B = H'AH; and here we recognize the congruent or currelatory
subgroup. Such variables 2 and y are said to be cogredien : fney are
Ulustrated by points in analytical geometry, The equation {* = 0 iy

called a correlgtion.
If, in particular, 4 is symmetric and ¥ is identical with .- then T'

becomes a guadratic Jorm 'A% After linear transformation “\his in
turn becomes ¢'H' AHE, where the hew matrix H'AH i3 also 4w netric
(since (H'AHY = H'AH), as is otherwise obvious. NS

N
ol

(iii) Conjunctive Transformations “ "

L &
If the variables #, & of g Hermittan form unag\go transformation
" according to

AN

v=HE, E=HE \H\+o0, .. .

the resulting form ig AV
Fdw=FHdHE~ FBe, | (11)

?v]lerf? B=HAH. Thys A ligs been transformed nte B by u con-
}unctlv.e transformation; and we note that the conjunctive trans
@ith Hermitian forms exactly as the con-

gruent transformation(G§ "with quadratic forms, the latter case, for

real transformatiops, eing indeed a special instance of the former.

) Unitary and Orthogonal Transformations

e -

If we premultiply a vector 4 — &, 29, ..., 2, having complex
aleme%m 2 given field F, by its transposed complex conjugate &,
we dg;zve the matrix prodact

NS

~O ' h=@%+@%+af+@% - (12)

\ %
number which is essentially reql gnd hon-negative, since it is

d scalar

evidently g sam of. Squares of real numbers, fhe moduli of the z; in
fact, and which is indeed only zero when # is null. This fundamental
Hermitian inner Product

b of & anq % 18 often called the nomm of the
& Hermitian form with untt matrix.) The
s (Za)}, is sometimes

denoted hy | Z|; it is an obvious generalization of the modulus of

& compiex numbey,
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A veotor @ such that | @] = 1 is said to be normalized: for example,
zf[ ¢} sud &[] % | are normalized vectors derived from @ and # rospec-
tiv ei“ Al vectors except the null vector can be thus normalized.

EXAMPLES

1, ¥ind the norm of the vector peneil [A| =, |-~ [#;|], where » is scalar and real.
EEPHENLE YN EN I EALY
2 I ?

2. Extablish the Schwarzian incquality (I 2y, | )2 < (2| 2, [B) (2] ¥,
the condition that the above qua,dratlc in A should not he nega,twc
seeurs only in the case when the vector z is a sealar multiple of’y‘]

that if g be & normalized vector, and « is an arbitrary vectclr then
g = 79)= 1, |{g=)] <] #|-

S

."

Funds:zontal Latent Forms. "‘\\

It wiil now be shown that the inner product ®%'is latent in the

unitary group, For if 2 is transformed to f by non-singular $rans-
formazien I we must have )

s=H¢, &=HE &= g”’ﬁ'. ... (13)
Hence Fr= E’ﬁ’ﬂf P £ 1)

™

But if i¥ is unitary HH= I, ;u:[d 80 &'z = £¢ that is, ¥z is latent

in the o"oup Conversely ws; may ‘show that if €€ is equal to &'z

identieally for all V&lueS{){ﬁ, then H must be 2 unitary matrix; for
O&z= ¢HHE = gg, N e 1)

and consequentlyd ﬁ H = [ since the £, are arbitvary.

If the elements and variables concerned in the above are real, the
case re rmw%to the orthogonal case. This is evident on inspection.
The form $hat is latent in the orthogonal group is then seen to be the
quadrgtie’ form o'z or L#,% There is also a complex orthogonal cage
mm\h‘iﬂL ®'s is invariant where ; is complex, but, though many of its
properties are easﬂy shown to be the same as those of the real ortho-
gonal case, 1t is mla;twely unimportant.

The latency of 3 #,® gives one of several reasons for the choice of -

the word “ orthogonal : for the sum of squares in question repre-
sents, in a suitable system of rectangular (that is, orthogonal) Cartesian
axes, the square of the distance of the point z from the origin, and
remains invariant for a change of axces, provided that they remain
rectangular, with fixed origin.

Q"
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A

’gsipnfsl,"the matrix 4 may be sajd (

5. Geometrical Interpretation of the Collineation,

Let 2 denote a point in space of n — 1 dimensions, the s : "-ments
#; of the matrix » being hornogenecus co-ordinates of the ot - lerred
@ a given simplex or frame of reference. (Invariants, pp. <. 293)
Since the ratios of the co-ordinates are sufficient to deter.iine the
point, it follows that the same point is also given by
)m::)({xl,mz,...,xﬂ}, A0 . ., {1'(2

We shall exclude for the moment the case when every com .t is
zero. If now 4 is a non-singular square matrix of order 4%

18 a
cerfain point y = Az which is unique; while reciprocally’ - have
= Ay, so that z is also uniquely determined if yis\ givis.  The
one-one correspondence thus set up, between what wWehmay cali object .

points z and their images i with respect to 4, constitittes a colliration.

Consider now the case when g — 0, Obviowdly Az = 0 als. Con-
versely if y = Ao — 0, and 4 is non—smgulg,r,%en the only adniizsible -
solution of the n equations involved is ai="0, (Cf. p. 10.) ilence
in the non-gingular case if & is zero so 13 ty,’and conversely.

The case is different for singulaf, eollineations, that is, those for
which y = Az, but | 4| = o, THEr® is then no reciprocal or iniverse
collineation, and so there are aﬁ@tually object points which POs5e38 Do
images; these are in fact determined by values of a,, not all zero,
which satisfy 2g;0== 0. There exists therefore & certain locus of points

i s \J

@ which mdy be s2id'$s” be annihilared by 4. If ¢ and z are two
such points, we have Adx =10, 4p- 0, so that Ale + Ay =19,
where A is an, dihitrary sealar. But %4 Az denotes a point in the
same stmz'gift lie as & and =, Hence if two Ppoints are annihilated, so
are all pointgin their common straight line, Similarly if three coplanat
but ngrks;ollinear points are annthilated, so is their common plane:
and goon. If the linear locys which is annihilated is of ¢ — 1 dimen-
g ; following Sylvester) to be of nullity
e} “and, in fact, for a matrix of order % the nullity @, it will be found,
15 connected with the rank » by the relation 7 — 5 — 4.

. 6. The Poles anq Latent Points of a Collineation.

When’ object and image point coincide, the point is said to be a
latem: point _of the collinestion and of the matrix 4. If o 18 a latent
pont then, in order that ¢ ang Y may coincide, we must have y = Az,
that is, y, — Ea“m{ = Amg. The condition for latency reduces therefore
to that of the consistericy of » homogeneous linear equations in the #,;
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and when the #; are climmated we obtain the characteristic eguation
of 4, urwnely, '

apn—A G Oy ... O
[ A M| = (gg—A  yg ... Gy, —0. (17
@y G By vvv Opn— A

The determinant | 4 — AT is called the characteristic delerminant of
A owhes it 18 expanded in powers of A we obtain a polynomial, of\

order » it A, namely, the characieristic funciion
50 (D0 — X BN (], P
where 32, 78 the sum of the diagonal minors of order » of 4y a.nd Py 18

the dL sininant | A\ itself. (Invariants, p. 98.) The e tation has n
roots A, Ay, ..., A real, complex, or zero, called“the latent roofs
of the rwatrix 4. For each distinet value of A; theleondition (17) is
satisfied ; and a sch of #; can be found which are, pbffaﬂ gero. If A, =0
this gives a vector y proportional to z, and tﬁeféfore a lafent point .
it ).f = {1 if; gives a zero y, so that x is an Okject point annihilated by
4. We shall call the point # a pole, gf- the collincation whenever
¥ == Az, whether A;= 0 or A;==Og\ %o that the poles include all
latent polists, together with all pomi:g annihilated by A ; and no others.
Bach zeve root ). that may exmt 18, however, ca]led a latent root of the
matrix 4, “.\

AL
L Ths poles of the collmea,‘own y= Az, where 4 = |: 14 jl and Apv0,
are {1, §, 0}, {0, 1, 0},{\00 1} .- .

Wi 2
2, The mtrix\'lg} . 3] has no latent points, but has one pole {1, 0, O}
3. E-very.?rrmm'm of order n has af least one pole.

[CE. p. 29.

7. t}hange of Frame of Reference.

}hu collineatory transformation of the matrix 4 itself may “also
be interpreted from the prosent standpoint. We have been consider-
g 4 as a kind of optical instrument which transforms object points
2 into image points y, where hoth @ and y are referred to the same
frame of reference, Suppose now that a new frame is chosen, defined
by the linear transformation

f §£ b hwxss = 1’ 2’ sy By * (19)
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giving the new co-ordinates ¢ in terms of the z. For the new to by g
proper, and not a degenerate, frame the matrix H must be 5an-
singular, so that [H| 0. If now n denotes any point ¥ relosiog
to the new frame, then n=Hy, or, since H is non - i,
y==H". Butif 2 and y are object and image we have = Az,
Hence

7?=Hy: HAQ:: HAH_:lf: Bf, e e . ("'\‘

T
where B—= HAH-\. Thus the original geometrical collineation o
matrix 4, when referred to a new frame of reference through 4 ' na-
formation of the variables with matrix H, hecomes g collip'mtibx; of

The properties set for demonstration below, thougbﬁoﬁ"diﬁicuii: Eo
" verify, are important, \\

1, if B is the transform of 4 by H, 4 is the tr@n's]%rhl of B by H1,

2. The matrices A and B — HAH- Bape ake;m}né ’c?mmcterfa'sﬁc equation sad
therefore the same Itent roots, AV

[Bince B = HARL then, B_. M= Hd X wnp, Forming the dnrer
mmantsofhothsideswehave]B—- M|i=[H|[|4- Mi|HP=|4— [EAH
and the results follow.] RS

3. If x is a latent poini, or g poze,.éf'A and if W transforms x into Y. then v in g
lutent point, or o pole, of B. 2

[Bince dx = Arand y = Ez,{flerefore AH-1y — W and so HAH = 3y,
Thus By = 3y, which proves,the'theorom, Tt iy Instructive, ag showing the pov-er

of m;.tjrix algebra, to rewii@» this Proof in its fuil prolizity for the cuse when
= a. N .

3. Alternative Geometrical Intefpretation,

In the i:niigr\prctation Just given we transformed the frame of
reference, iobthe points under view, We might equally well have kept
R\ the original frame of reference while

4 transforming the points, Then the three
equations y = dg ¢ — F. %, 3 = Hy would
“determine, from 4 given point 2, two new
points £ and y: and again from y s further
point 3. These four points are in general

_ distinet, and form g quadrilateral, which
< ¥ Is usually $kew if n ~ 3, The single arrow

' in the figure dengtes the operation A
changing ¢ o ¥: the double arrow denotes H. Sl another

Operation is suggested by the Temaining segment from ¢ o n; and

£\
/7N » y

o
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the algebra at once shows that this is the operation B= HAH,
¢ = HAH "lf.
am shows vividly why B is called the transform of 4 by
H; for thi: operation 4 is palpably transformed into B by H. Again,
suppesiing i coincldes with «, then » {uniquely given by He) must
eoincids £. Hence the matrix H transforms latent points of 4
into luteiid points of B, as has already been proved in Example 3 above.
Again, 1t « =0, y = 0, then £ 3= 0, 3= 0. In this case neither point
% nor 5 wili exist in the figure: and @, § are both poles of their
matrices. .
Onee roore, let a sequence of points be taken such that each is\ihe
image of mmediate predecessor with respect to 4; such a,,séq\uence
may be denoted by @, Az, A%, . ... If these are treate@“ds ohject

points for the matrix H, their images will be £, B¢, Bgf, o for-

Hdrg = 16 = B¢ by (4) of § 3, p. 35. Further",‘;}f the matrices

are of ordder w, the figure is situated in space of #<\1 dimensions, in

which eus, vo anticipate for a moment the topj}c\}f the next chapter,

% points at most are linearly independent. Consgqilently the first n - 1

terms of the sequence x, 4x, A%, ..., 40d"possibly still fewer, are
- connected iy a relation N '

(A7 + g dmL 4 g, A2 ‘.:;::'ﬁr g.1)z = Pp(d)z=0, (21)

where the g, are scalar constanges Thus each point z has a characteristic
Jfunction with respect to a mattix 4, that s, a polynomial in 4 of lowest
degree with sealar coefidients, (4), such that (4d)z = 0. Such
fanctions, which also exist, as postmultipliers, for veetors of the first
kind, will he considéred in detail in the mext chapter.

9. The Gayley:@}niilton Theorem.

Cayley, \i%his original memoir of 1858, enunciated buf did not
Complete:}ﬁ;prove a fundamental theorem in matrices, namely, that
any sofiare matrix 4 of order n, whether singular or not, satisfied the
1denbify ¢ (4) = 0, where ¢ (A) = | 4 — M |; in other words, if n the
cwpansion of the characteristic determinant of A we replace X by A, the
resulling matriz polynomial 4s null. Various proofs of this remarkable
theorem exish; some of the simplest depend on the adjoint of 4 — Al
which will of course bhe a A-matrix. (Cf. Inwariants, p. 100, For
we have, as in Chapter I, 4

(d— ADadi(d — AD =N . . . (22)
But, as has already been observed in Chapter 111, p. 23, sealar poly-

Q.
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nomials in 4 hehave like ordinary polynomials, and 80, by ihe re.
mainder theorem,

A= SN =0, mod A~ AL . | | g

Comparison of (22) and (23) shows that ${A) itself, consiivrod ag
a A-matrix, must be divisible by AT — A4; but A is arbitiary, and
¢(4) is independent of ). Hence ¢ (4) must be zero, whicl uroves
the theorem, N

The circumstances under which 4 may satisly a chareilohdtic
equation of lower degree than n will receive comsideration I Naly two
following chapters. O

10. Historical Note.—~The Hermitian bilinear formwds first :roated
by Hermite in 1854; J. fiir Math., 47, pp. 343«68? or (Eurees, I,
234-63. Traces of it appear in the letters of \Hermite to Juzohi of
slightly earlier date. NY;

Cayley’s remark concerning the Cayley—ngm\l'lton theorem is ¢ rious.
He says (Collected Warks, 11, p.483): = Lhitave not thought it n CUrgsary
to undertake the labour of g formal proof-of the theorem in the «cneral
case of & matrix of any degree.” Heproposed to write the theorem ina
otation equivalent to | sl — S5H [=0. Hamilton’s title o the
theorem is baged on the fact ¢hat he had previously establishod the
existence of characteristic.fequations for quaternions (Lectiires on
Quaternions (Dublin, 1853)\866-7).  The terms latont roos and latent
point are due to Sylvés\ﬁei‘: see for example a characteristic metaphor
on latency (Collecteg\Works, IV » 110},

¥/



CHAPTER V
A Bassowarn Cawoxtoar, ForM ror 1HE COLLINEATORY GROUP

I tin present chapter we shall consider a square matrix 4 with
iaments belonging to a prescribed field, the object in oW
iablish a rational canonical form through collincatory(trans- -
, that is, to reduce 4 to a certain simple form B ‘m'}{HAH“l
by proce:zses which are entirely rational in the field. The fintdamental
idea thronehout will be that of the linear independengs of vectors in
the field. ’

w\,/
i
1. Linesr Independence of Vecors in a Field,
A get of vectors #, 9, ..., win the field ?:,:Whére we=[agy, ty, ..., 8],
will be ¢2id to be linearly dependent m"}" af there exists & relation

San=au-t oo +w=0, . . . (1)

whete the coefficients o, B, . . /4 ) are numbers not all zero, belonging
to F. 1i wo such relation,cia%ts, the vectors will be termed lineasly
- independent in F. The #*components of the vector v may also be re-
garded as coefficients of'a linear form

R

in an arbltrfhy\s(:t of variables = {m,, #,, . . ., ®,}, and similarly
for 5 == 238", , @ = 2w we may then replace (1) by the alternative
relation AN e .

<\:“' ouz -t foe - . o+ ywr=90, {&}: . . . (3)

for evidently (1) stands for # ordinary scalar relations X qu, =0, (3==1,
2,.. ., n), involving the various components u,; and (3) means the
same, the notation {x} implying that i is an identity for all values of
the 2, Also, in respect of dependence or independence in the field,
the forms ¢, %, ..., w bchave exactly as the vectors u, », ..., w.
Although the elements u,, o, ..., a, f, ... are members of F, it is
at present immaterial whether the variables z; belong to F or not.
45
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EXAMPLES

1. The null vector = (0,0,...,00is linearly dependent.

2. The n wvectors i=[1, 0, Q... 2 0], d=1[0, 1, L || A
f=100,0,..., 0, 1], that is, the » vectors which form the rows . the unit
mairix 7, are linearly independent,

These vectors form a basis, in that any other vector of arder # in i .- rld ean

]
be expresged linearly in terms of them as 3 u; 1., the components #; bieinz lumbers
of the field. k=1 A

3, The two vectors u and v — [ony, oty ., ., o] are linearly (i “wpn,

4. Any n+ 1 vectors of order » in a field must be linearly depepdf,

5. Any vector u of order # can be expressed linearly in termeh; 4 given
Lnearly independent veetors oll), o®), || 7y, Dy

[The = equations w; = Za;%5 (7=1 to n), can be solfed Yor g i
[955] % 0. Thus %= Xu,»%,  Take the rowy of {v;,] to befle given veotore gl
and the resuli 4 = o 4 2 follows.] ~\

6. Ii r vectors of the nth order, £,, E, .., £, are’given as lineardy instepen-

dent in ¥, then # — further vectors exist slich t@‘r}aﬂ % vectors ar linearly
independent. <

(H | X, is & non-zoro minor determinantvofyorder » belonging to ti r x n
matrix } Ev Eovnn, £} having for ith row thewectar £y, then the squurs matrix

Y= T I. is non-singular, I,,__,,,]ﬁé}ng a complementary unit riivix of
fihor .

order # — r. The last n — » rows of ¥ ¥urnish the desired vestors. Il is the
simplest but by no meana the unigeisolution, ]

L, e, 0, a0 n different numbers belonging to ¥, the »n vectors
=11, ¢, ¢, €t c,-“:\]\&re linearly independent.

8. If & determinant Apvapishes, its rows (or columns) are linearly dependent.

LI£ the veotars u, 5\ | » W are the rows, these are linearly dependent if
there cxists a relatigh, -

?ﬂ’{s‘*!l”;-l----—f-vwfr-o, i=1,2 .., 5

where 2, 1, 2% are not all zere, But the vanishing of A is the condition
{p- 29) that/thége bomogeneoys equationa shownld Possess a solution, |

QS
2. Tl;gz Reducad Gharactgristic Function of 5 Vector,

(B matrix product ud, formed from a vector 4 and a square
ﬁaﬁmx A of thc_ same order, yields g new vector 4§ — [, 4y, . . ., @al
_-0T® geverally if 4 (4) is 81y polynomial function of 4, then u(4)
i again 4 vector.  Suppose then that we have 4 certain non-zero
vec'tor % 1 the field F; we may proceed to construct, with respect to
3 given matrix 4 jn the field; a sequence of veetors
%, ud, ud? Y R {4

f;he squencfa being continued just so long as the vectors comprised in
1t remain lineaxty mdependent.  Since g i the greatest number of
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vectors which can be thus attained we must have 0 < m < n. Again,
since i sequence terminates becanse the next vector udm is linearly
relatert to the preceding m vectors, there must be a relation

coud™ — crud™l — cudm=t _ | g g 0, . ()

whors the ¢; belong to F, and are not all zero. Also 24 18 10t zoro, for
if it - the veetors in (4) would not be independent. Hence without
logs ‘merality ¢y may be taken to be unity; then, in virtue of the
distriitive law, the factor u may be taken to the left outside a bracket{
and a» annihilating matrix polynomial &7 appears in the form

¢\
vl = u(dm — ¢ Am1 —gdmt— . —e, [)=0. N\6)°

The matrix polynomial U is called the Reduced Cligracteristic
{briefly the R.C.F.) of 4 relative to the vecton W in the field
iore no misunderstanding is likely to arise wa@hall call it the
- The properties of 4 are closely bound Wp*with the nature
of the vazious polynomials . 7\ '
" N
3. Fundswental Theorem of the Reduced*Characteristic Function.

LA

-

Thevrsm L—For a given arbitrary novetero vedtor 1 in the fied F
of @ spuere matriv A of the same orderpthe R.C.F. U is unique, and is a
dwiser of any other polynomial gb(Aj):'z"n: the field such that wi(A) = 0.

Proy.—If U is not a dividor of i, then a non-zero polynomial
g(4) cxists, as in § 5, p;?f’), having coefficients in ¥, and of
order fess than m, such'that U(A4)k(4) — ¢(4)h{4) = g(d). Pre-
multiplying by u we hayeull - k(4) — ug - k() = ug(4). Since hoth
ul and »yf are null ¥estors, 5o is ug(4). But this contradicts the fact
that U is the polynémial of lowest degree in 4 which annihilates .
Hence U is a fadtor of i g

Again, L;f\&ere to possess two different B.C.F.’s ¥ and U, of the
same degree ', then the non-zero polynomial U — Uy, of degree less
than.p{ fsince highest terms ocancel), would satisfy w(l/ — 1J)) =0,
- whibh_is once more contrary to hypothesis. Hence the R.C.F. of w is

unigue. '

Definition of Grade of a Vector.—The degree m of the R.C.F. U is
catled the grade of the veclor v with respect to the matric A in the field F.
All possible vectors u, v, ... of the nth order in F have their
various grades and R.C.F.’s with respect to A. The significance of

these differing grades in relation to the invarian Properties and the
canonical form of 4 will duly appear, '
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Congider next the n vectors

=1[1, 0, 0, 0],
= [0, 1, 0, . 0],
L=1[0,0,...,0 1]
in terms of which as basis, as we have mentioned in Fxiinle 2 of
§ 1, any vector « can be resolved into components ~
u=u1i1+u2iz+--'+uﬂ‘iﬂ' N

O
Let U, U,, ..., U, denote the n R.C.F.’s of these n vertend . and
let $5(4) be the L.C.M. of the polynomials U, Exactly a8 i’ -linary

scalar algebra 3 (4) will be unique, will have unity fo'ricbelfi:-{ ~i of its
highest power of 4, and will contain each IJ as a fagt(}r.\ It foil- s that

: W=l + wyig b e 0: N
and this is true for every vector in the ﬁeld.';.\\lgIow by matris multi-
plication we have \

(d) = I = ?'ﬂ A St P S PP
ol Lavl Lo

Hence 4{A4) vanishes ‘id’enjt;bally, and we shall show in fact thut
| $(d) = 4 — %4’%‘\-— GdP 2 — g T=0, 0« pala, (9)

which is called tXe’ Feduced Charactoristic Equation of the matrix 4 in -
the field 7, /By/Theorem T, since wi =0, and since for any veclor u
in the field“t¥/ < 0, where 7 i the R.C.F. of u, it follows that &
contamg{las a factor, and is thus the L.C.M. not merely of the U,
but q}sé, of all the R.O.F’s of vectors of order % in the field, Conversely,
b00; A’ cannot, satisty any equation y(4)= 0 of degree lower than
\g:‘:for if it did, then 4 X would be zero for all vectors w, so that y would
be, and ¢ could not be, the least common multaple of all the I7,, contrary
to hypothesis. Hence the assertion is proved,

The Reduced Characteristic Function (A) of a matriz A is a factor

of the Characteristic Function ¢(A), as defined i Chapter IV. (This
d ¢ are identical—the elementary
should find, precisely as in the first
yonomial ¢(A) of lower degree than
=0, contrary to what hag just been proved.

case.) For if this were nof, 50 We
Part of the pregent, section, a pol
either, such that g(4)
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4. A Rational Canonical Form for Collineatory Transformations.
Theorem IL—By rational collineatory transformations within @ given

Jield F containing all the elements ay; of a square matriz A of order n,

a eoncaieal form : -

B, .
B= . . B .. . |=H4H* .. (0
}; B . . P Bt ) ',\:\'
may be found, such that each diagonal submatriz B; is of the tyggé,:f\z.g.,
] : : P
S ~\
Bo=1 . .. ... . |, ea>p=exo0>y (1)
TS
Ay lpy Bpeg ... O .“~\V

all the dements of B and H belonging also to the field.

Proof.—Of the vectors of order n‘m F, there will he vectors of
highest grade, p, with tespect to A;\'I:}eﬁ one of these, # say, be taken,
and let the chain of (linearly independent) vectors w, uwd, wA2, . ces
#A? 1 be formed. Let these g¥ectors in order be taken to be the first
P Tows of the premultipl@g"h-rowed matrix H, and let sets of »
variables & = {2, @, ... 2%}, ¥, & 1, be introduced by the collineatory
relations of the last clizpter,

y = A, /= Hz, n=Hy, sothatn= HAHY. (12)
:"\:s.
We have.th&;' corresponding to the first p rows of Ha,

al
N 3

...\:”?:'ua’cxk == UL = 51;

) F=1 .

N m=ude =g,
= udls =&, a3

Ny = 4P Iy = £,
= udlz = a;ogl + %ﬂfz +.F alfﬂ?

0 <p<n

The last of the above relations is the result of postmultiplying the
&

(E420)
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R.C.F. of u by 2, transferring all but the first tern to the rivht side of
the identity and substituting the appropriate £/s. Thus wi have the
first p of the x; linearly in terms of the £y, and this (as in § 5, p. 14)

yields the desired form B, for the first P rows of the runonieal
matrix B. If p=1, we have M= &£, 50 that B, = «; or again,
in the elementary case P = n, the reduction of 4 ig connplete with
B,=B. |

If, however, p < n, there will be other vectors ¢ Iineariv indepen-
dent of the preceding vectors u, ud, . . . » #APL and we viay e a
chain o, 4, . , | 2497, continuing just so long as u, ud, . ,Oadrt,
204, ..., pA"Y gy linearly independent. For the differant “rentors

v remaining there may possibly be more than one valud ol’y: if that
be 8o, we choose & v such that g takes the highest valne.? Then if p4e

‘be the first vector which is linearly dependent on.the’p 1 ¢ preceding
vectors, we have \/

oAt = AT  bpdet 4 p g kAP L, (14)
which we may write o¥ — uK, where \

Vodi-bdo—pdeh g (15)
K=hdrtdpamey | g pp -

where p _>9'>0, and all of b;-.:and k; belong to ¥, By the mode of
tonstruction of the chaigmo relation oV = uK, exists, where 7,
18 a polynomial of deggﬁéx\l‘ess than ¢. Had we taken instead of v any

Vect?r O.f the form B v — uQ, where ¢ is an arbitrary matrix poly-
nom;al in 4, a resgtly similar to (15) would have heen obtained,

NIV = uM, WhereM:K-—QV; - .o (16)

' I
and the pew/vector § oould satisfy no relation 8V) = uM; involving
aV, qf\ Wer degree than V, for then on resubstitution v wonld do so

boo ias:hi_ch 18 not the case. Hence (16) gives 647 in terms of the p4q
'"11]185'1‘1‘1}' independent vestors

9 Uud, ud? | yde g 64,042 ... 4+, . (17)

' < .No?v ‘Q Is arbitrary: in keeping with (16) let it be the quotient when
13 divided by V., so that M is the remainder and is therefore a poly-

;L((:rrsial of degree less than g We shall prove that 3 is identically

In fact if M g
of 4. Tf however,

and further Jet &,

identically zero, then 6V = 0, aud V is the R.CF.
M =0,1et Phe the R.CF. of 0, 80 that 4£ =0,
be the quotient ang A the remainder when P is
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divided by V, so that P = V@, + N, with ¥ of lower degree than V.
the : N

But then = 8P = 6(VQ, -+ N) = ullQ, + 4N,

since 9V = uM. The degree of P is equal to or less than P, that of ¥
18 ¢, and of M is less than ¢. Hence that of M @ is less than g+ p— g,
and therefore less than p. Thus N cannot vanish, otherwise % would
be anuikilated by M@, which is of degree less than p,

We have thus been led to a relation similar to (15), but with N of
lowes degrec than ¥, which is contrary to bypothesis. Hence M can »
only be zero, and ¥ is the R.C.F. of 4. By taking g further variables,

KO
bon="=0n, Lu=">04z,..., &{,=04"2s, |, 18
we have a gecond chain similar to that of (13}_, :”}". '
b = gp-f‘ls - 'S

~N
Yoy = bdz= £y, N4 :
N (19)
g = B4 = bq §p+1 + ba—]_ §y+z -+ -"\'T"‘ by fﬁw
0 <g<p<mh)

and (16) ehows that all of the p - ¢ veetoms 7 are Iinearly indepen-
dent. We thus derive ¢ further rows of\the canonical form B, in the
shape of a second canonical submatrix B,

If p 4 ¢ << n, then vectors w, litearly independent of the p - q
vectors atready considered, arg 8till outstanding, and we can construct
a further chain w, . . . , wd s Lof vectors, in such a way as to have s
as large s possible and to Rave in all # - g -+ s linearly independent
vectors. This time w4pasthe first vector that is linearly related to the
Preceding vectors and chains, In place of {15} we have a relation

N\ wW =ul, +6Ks, . . . . . . (20)
where W is a,\'p\ol}nomja,] in 4 of degree 5. By a device analogous to
the earlicr.ne, we may usc in place of w a modified vector =

\N"

D—w—uQ Qs . . . . . Q1
Wher%z, ; are the quotients when K,, K, are divided respectively by
W. Thisleads as before to & W = 0 ; a fresh instalment of transformed
variables can be set up, yielding a third canonical submatrix B,.

No ossentially new feature arises in the process of deriving any
remaining submatrices B,; the formation of chains ultimately either
exhausts the » rows or arrives at null elements, and the canonical
form B i therefore ostablished. '

The uniqueness of the form B will come up for consideration later.
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5. Properties of the RB.C.F.%s of the Canonical Vectors,

We shall now prove a theorem which conuects the present jnvesti-
gation with the more general results of the equivalent; case given in
Chapter III.

Theotem II-The several R.C.F.’s U Vv, w, ... beleiging re-
spectively to the vectors v, v, W, ¥, which lead the linearly \ndependent
chains in the canonical Jorm B, are such that each is either coitgd to s
Successor, or contuins 1ts suocessor as g Sactor. ~

Proof —Consider the vector w-+v: let its R.O.F. be digtated by
Uy, so that (+ )0, =0, As before, on dividing T WU let
U,=0Q+ R Similarly let U, = vp + S, where B and™S are poly-
nomial remainders of degrees less than p and g respedtively. Then

0= @+ )0y = u(UQ+ B) o(VP 4 SHEUR - v5.

Again, by (15), such a relation R 4 98 =0y3s impossible. Henee
a1l the coefficients in B and S are zero: in other words U, is o multiple
of both U and V. Hence the degree of TS at least P, that of U. But
the degree of U, is equal to the gradé 0f v - v, which cannot cxceed
P, the grade of u, since 4 was chosen’ from vectors of highest grade.
Hence the degree of U7, is exactlyyp; therefore U, can only differ from
U by a eonstant factor. But eath has unity for coefficient of /7, Thus
Uy=U; and [ contains W.as'a factor.
A similar argument‘pfoves that ¥ containg W, and so on,

., Theotem IV—Th¢BC.F. of the vector of the highest grade is
wlentical with the Reduced Characteristic Function of the matriz A, and
therefore anwihglales all vectors, -

Proof—Siace U is » polynomial in 4, it commutes with 4: also
u.U = O\',T:Ience wA = 44t — g, Similarly 9440 = +7 47 = 0,
S8 BV= 0 and U = 0, moq 7. Hence each of the # linearly inde-
pg};\de}lt t.rectors u, ud, ., ., p, vd, ..., L. With which we have
oheen dealing i annihilated by . Hepee again any linear combination
of these vectors i annihilated, namely,

(a1u+ azuA—]—...-I-ag,ﬂv—f—...)U-——-O.

Therefore, by Example 5, p. 46, f, any vector whatever, satisfies the

equation §U = 0. Ry Some. vectors w satisfy no such equation of

lower order, The Polynomia] 17 must therefore he the Reduced

* 0 '
Bircumflexes are now dropped ag unuseessary,
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Characteristic Funetion of 4; and by (8) must vanish identically, Thus
U= i{d)y =47 — g, 421 — agArt —,,  —a, I =0. (22)

6. Observations upon the Theorems.

Befors we give still further consequences of the theorem that has
given us the canonical form (10), it may perhaps be helpful to offer
a few commients on the proof. First in zegard to the initial choice of a
vector ol highest grade, in practice amy vector may first be chosen:
for if vecters of higher grade exist they will necessarily reveal them- N\
selves in the course of the systematic and finite process of chaine
formativn. Thus, if at the second stage it were found that the ’g{ade\
of v were wreater, then % would be rejected in favour of v: and\simi-
larly at othor steps. Tt is even possible for the gennine hightstgrade
veetors to lic conccaled until Theorem ITY is reached: $hi® happens
when the polynomial ¢(A) has factors which aze ratich@lin the field,
a3 we shall iljustrate In Example 1 below. \

Again, whatever the matrix 4 (even if 4 is n,um,\ every vector has
- @ posifive grade. Tt is inferesting to note thatthe nevessary and suffi-
cient: condition for every vector to possess ufiip grade is that 4 should
be scalar, @s the reader will veﬁfy by, nialﬁng p=1 in the above
investigation. Tn this case U = 4 — ap/ = 0, and none of the chain
vd, ... are independent of v. At the other end of the scale a much
more gubtle question arises, namely, under what conditions will all
non-zero vectors of order h:%v;é\maximum grade, n?  We must leave
this question over, \\ e : -

7. Geometrical and Dugi’Aspect of Theorem II.

. QG .
Instead of forn’ﬁw a chain of row-vectors u, ud, wd?, ..., we
I

might equally well Eve started, as remarked in Chapter IV, p. 43,.
with an arbit.%ry' column-veetor z, and have formed a chain =, Az,
A%, Of.:p terms. This would have led to a canonical form frans-
Posiﬂ_q"tl‘le{’ahove form B. If we treat the vectors  as primes and the
con gedient vectors ¢ as points, we can give a simple geometrical
Tuferprétation of the initial reduction in Theorem IL,
The bilinear equation
)
ydr =3 Uy % = 0 e . (2B
ii=1
determines a collineation in space of #— 1 dimensions, If we
regard the » components %, as current homogenecus prime co-
ordinates, the equation of the arbitrary object-point @ is wr = 0,



64 COLLINEATORY GROUP [Crap,

while that of its image is udz = 0. Correlatively, if wi: treat the ;
a8 current co-ordinates, the equation uz = 0 is thut of Iue prime %,
while %Az = 0 is that of the prime uA,

Suppose now that we follow Sylvester in beginning wiil an arbi-

trary object-point  and Iterating images A», A%, .. . unii} the chain
of points becomes linearly dependent. For example, sitprioen that the
points %, 4z, 422 do not lie in a line but form » triangle; md further
that A%; Ties in the plane of the triangle. However man:- dimepsigns
{n > 2) are considered the vector A3z is linearly relatod to the \three
eatlier , Az, A%:; let us say )
t=art Bty ... O ey

where y = Ay, 2= A%z, t = A%, and q, By al:e'ft;f:u]i”‘- On pre-
multiplying throughout by 4, we find that the nex{rpoint: in the chain
18 coplanar with the second, third, and fourthyand therefor with the
first three. In fact, the chain never logues the plane. '
~ The canonical form B is derived, from.fhis point of view, by taking
the points o, Az, A% as three vertices dhe’ frame of reference. It is of
course necessary to take n linearly independent points for the complete
frame, or simplex. If therefore @3> 3, a fourth vertex mmist in the
Ppresent case be sought outside theplane of the chain of three Jnst found:
and this choice interprets thé~next step in the proof of the theorem.
Corgelatively, 2 chain®f Yow-vectors u, wd, ud® . . such as we
actually used, determied) & set of linearly independent primes, which
are taken as the firsf faces of the simplex; as for example, it n =4,
the faces of a tettabedron. Only if the matrix 4 is elementary is 1t .
possible for axsiigle chain of primes to furnish a complete simplex.

9Ny -
8. The Invariant Factors of the Characteristic Matrix of B.

W‘i’iﬁwe already seen (Ex. 2, p. 42) that the A-matrix B—MJ,
thef:].iaracteristic matrix of B, is such tha [ B— AT l=|4-— x|
i We write out the determinant, | B— A1 [ in full and expand it by
aLaplacian development, we obtain

B—AIl—|B
vhore I [=| y N[ BA)]...| By,

|B,,(}l)| E[:&,-—-AI[: . (25)

T ooy tpy ... g —2A
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On expanding the determinant | B, (A) | in terms of its last row we obtain’

(=P | BN =2 —ag Xl —g 2~ g
= U(X) = ¢(A), by Theorem IV. . (26)
Similarly (39| Bo{A) | = V(A), &ec. Ilence we have at once that the -

characteristic function of B (or of A)
pN)== | A= M |=[B— X |= (=) UNVNFR)..., 27

which gives an alternative proof that the Reduced Characteristig{
Funetion 5{2) or U(A) is a divisor of the Characteristic Functign
p(A): and that ¢ = ¢ in, and only in, the elementary case. &%

It is not difficult to identify the polynomials U(Q), V(A), .+ N with
the invariaut factors ¥,()) of the A-matrix 4 — A, but i an order
reversed frora that of Chapter III. We shall show fore&himple that
U(A) is the result of dividing | B~ AI| by the JLCF. of the first
minors of | & — AT . O

Congider the minor of | B— AI| obtained7by deleting the dth
row and jih column. If the element (47) isnt Withit one of the sub-
matrices £, (A}, but is one of the extrangdlis zeros, the corresponding
minor is zero, This we see at once bytobserving that if a unit were
inserted a$ (77) and | B — AT expa.pgi.ed’as before, the result would be
unchanged. Again, if (3) falls within'e submatrix B, () the correspond-
ing minor will evidently be, apart from sign, the co-factor of (i) in
| By (3| itself, multiplicd hy~phe continned product of the remaining
[ B, () I's. Now thig co-fa@tci'r in] B, (A) | will be a polynomial in A, and
the one of lowest degrce,is clearly that which has as its own diagonal
all of the units in thdduperdiagonal of B, (X); it is, in fact, the co-facior
of the clement in pliedefi-hand bottom corner, and is numerically equal to
unity,  Furthen“the Iongest run of superdiagonal units is in B,(X),
and | B, (z’g)\&-é we have seen, dontains all the other | B,{A) | as factors.
We infertthit the particular minor of value 1. F{A)W(A}. .. is the
H.C.F{0f the first minors; and so, as in § 7 of Chapter I1T, p. 25, U())
Is the \corresponding invariant factor. In a similar manner it is easy to
prove that the H.C.F. of second minors of | B — AI'| is that particular
minor which involves the p+ g — 2 units belonging to the super-
disgonals of the two highest submatrices B,()) and B,()), the first
column and last row of each of these submatrices being thus deleted.
Proceeding in this way we may verify that the mvarlant factors of
the Amatrix 4 — A1, as defined in Chapter III, but here reversed,
e [ By, | BN ... [BW| L L ..., 1 or D), VY,
Wy, oo, L., L (28)
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The 'identiﬁcation of the invariant factors of B - 17 <Jiows that
B — A1, and therefore the canonical form B, is wnigie- tor A and
all collineatory transforms of 4,

9. Historical Note.—A faint foreshadowing of a caroioy matrix
of the type B may be noticed in an observation of Spoitiv. . ale (1853)
that a binary quantic B0¥" — a2y foguanty2 —)ra,y

could be expressed ag 5 determinant of the type later cailiil “ recur.
rent ', namely,

A
% @4 a ... . a,
N
¥y = . ..., ¢\
NS ¢
. . - . . N . (”}‘.
vool (O

(See Muir's History, I1, p. 211.) With but Little mpdifteation {lix appears
a8 the characteristic determinant of a matrix oban’elementary < ruonical
form B. Bng Cayley’s memoir op matrices had not then been written,
and Spottiswoode obviously regarded thevdeterminant as intercsting

“but without application, Frobenius; t0“whom the theory of the re-
duced characteristic function of & mabrix is due, in g long classieal
paper (J. fir Math. gg, (1879),:1d6-208, (206)) explicitly gives the

rational canonical form B (as well'as the classical rrational form which
we shall gext consider), as the'solutiog of a problem equivalent to this:
to construct A-matrix which shall have preseribed invariant factors.

G. Landsherg (7, Sir Wath. 116 (1896), 342) gives the bilinear form

i : cially simple canonical forms of
an elementary hilideag form. A Paper by W. Burnside (Proc. Lond.

Math. Soc,, SerJ1, 80 (1898), 183) is devoted to establishing the
canonical fora' i jtg )1 generality, Tn the Present century the topic
has been Qe&ted_ by Nicoletts, Lattes, Dickson, Kowalewski, Wedder-
buzn, ai;.ii others,

o) EXAMPLES
V) N S
1. Beduce to rationgg canonical form 4 — [2 8 . I J .

This matrix “PPpears o be in canonjeql form with p — =2, But closer

-8 of . the submatrices 2 1] and [ 3 !
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The veotors (. ¢, 0, 03, {0, 0, 1, 0) are each of the sccond grade, but their sum
(1,0, 1, 0} iz of faurth grade. Taking this to bo the ipitial u, and applying Theorem
U, we reduce 4 o

. T .
HART = ) -1 l
-6 —13 -1 &

2. Caleulw:c & in Ex. 1. using w = (1, 0, 1. 0), H = {u, ud, 242, w49,

3. Bhow that. if 4 is non-singular, the vectors u, uA, uwd?, . . . have equal O
grades. )

[T(4) cannot have 4 as factor.] P, '\t\,'
'S\
POl 12 3 ' O
4. Reduce |1, 1:], 5 2 1] to canonical forms, N
Lol 111 ?

K
\:"\\\’
)

) e I . \y
. 5 Verify she identity [z, # 2] [32 . 1:| = [e,e + o st oz, x, y] where
9, N :

£ . . p
each of x, », 2 3¢ 4 column veotor of order . ,“,\
Extend this to he case of p such vectara, NV
B IF b =0 — et — g is thelR.CF. of the matrix 4, and s
8 a colurmm vector of maximal geade p, showthat AH = HR_, where :
‘?.‘}' ) ey 1
_ ~ L
H =480, A2y, ||| Az, :Q\a,nd B, = — e .
e L | .
\'\"' | &5 e e
O R
7. Examine the migibn\af canonical! form O‘f A=1" 4 ] (i) wheng =0
Vo \ - e . .
~\:. . . 2 3

and (i) when g\iif -

L) ‘P{AJJ:C.\I — 34 =21, and A is already cancnicel and has two equal
:\r.wm.nm“t factors: (i) ${d) = (42 — 34 — 20, and A has one invariant factor.
llamm“l\sg}"\@de{* 2 and 4 respectively.]

/



CHAPTER VI

THE Crassical Cawowical. ForM For THE COLLINEATORY (rote

The canonical form B of the previous chapter, though btained
by rational operations in the field of 4, was not the earvlivst.td he
discovered. The most important of its precursors was a forn: (fwhioh,
i the case where the latent roots of 4 were all distinet, w4 )
dizgonal matrix having those latent roots, in any preseriiail order,
in the diagonal; so that ¢'= [A;8,]. Such a form C 1€ty <lerivable
in general only by irrational operations, since a necelgAry protiminary
is the solution of the characteristic equation of"’g. Wher 4 has
repeated roots it may well happen, as we shalNfind, that ¢ cannob

" be purely diagonal; and perhaps the simplest way of ascertaining
the requisite modifications will be to re%rée the order of history,
and deduce the classical form € from®he rational canonica) form B.
We shall adopt this course first; lafr@fw:: shall give a second derivation,
closer to the historical order of evelopment, but at the same time

more tentative. ™

Ny

3

L. The (lassical Canonical Worm deduced from the Rational Form.

We have 4 = Hj ill_; if we can find I such that B = HCH,
!sh_en we shall have, 4= H,OH,~, where H,= H,H. The point at
lssue ig: what kj\jid"of matrix H transforms B into C? Let us suppose,
for example,\t}jat B = JICH, where

O .
<\ [ .1, 8

oo NG = H O: ’ ) ) 3 (1)
~0 1 ..y

\ ) _I.b4 by b, b ... 8
am'l where the latent roots g, B. v, 8 are all distinet, and the charac-
teristic function, common to 4, B, and €, is given by
$(A)=|4— M| = X bl)\3—~52)\2-—53)t—b4
== Ha—na-s. .. @

1L as in § 4 of Chapter V, p
U == [‘_ﬁs Us, Uy, U,), where none

&«
&

- 49, we take an arbitrary vector

of the components is zero, in order to
58
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generato the chain u, 0, uC? uC? and then take these four vectors
to be the rows of H, we find at onee that H i3 of the form

uo Uy Uy Uy '

H— e Uy 4,0

ma® wpf? ugy®  u,d*

3 3 0 a8 3
wad  uf% ugyd B

By a familiar result in determinants H is non-singular, sinee
[ H | = wuguguy | a®Fy*53 |
= iyt Aafyd), . . . . . \‘(4}.\

N

where Az 2y8) denotes the difference-product
E~NE—BB—a)ly—Bly—a)(B—a)

If for surplicity we put u=[1, 1, 1, 1], we ha¥e) at onee that
L= HCH ", or BH = HO, where the last relgxt{ y, Written out In
fall, appears as 4D :

R
1. 11110
S1 . o By 83

. 1 J a? B 'y2'32
L by by by By

ol

X

ad Baj,j;a 53
Tl 1% [Q aﬁya'l
_ o; B 'yq b \‘ B . = a* jp? yzﬁz . 6.
a® B2 4% G [ oy a® 8% ¢33 J .
_af g3 p¥ge 5 at Bt 4t 5

Thismay qag’iﬂ.\y be verified by means of (2), and it shows incidentally
that the pl‘cql'mf matrix BH, or H(, is of a type similar to . Since
the name';f‘ alternant ”’ is now well established for the determinant
of a matrix of this kind, we may perhaps call H and BH alternant
mafriges. Ror this particular case, then, of canonical matrices B and
C, itSppears that B and € are cach quotients of the same two alternant
matrices, 53 being obtained by postdivision, € by predivision. The
result may be extended at once to the case of a matrix 4 with its »
latent roots all differont.

Considering still the elementary case of B, let us next suppose
that certain of the latent roots are multiple. The alternant matrix
H then becomes singular, since two or more columns are identical.
In the theory of determinants, however, a modified alternant is met
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with in this case: namely, if a latent root a is m-fol
of the alternang containing it are numbered 0, 1, 2
the column 0 is the same as before, but the eleme

4 are derived from those of column 0 by the operation

example, if the latent roots are a, o, o,

COLLINEATORY GROUP

H appears as

=

. .1 , 17
e 1 B 1
e 2¢ 1 g2 28 y2
a® 3a? 3a B° 3p2 y®
al 4a® 602 B 483 ¥t

a® Bal 10q3 B> 5B 45 ]

while the determinant takes the valya

E

[Crap,

d, and the columng

e ]., then

(4

Ly

nts o {he columnp

)j..-‘jl. For

B, B, v, the muditicd matrix

Tt ¥

N

PN

which is a generalized or o

non-singular,

N
¢\

NS ¢
ak B By, e ¥y,
™

 {

HE [ = Alloca) (BB} = (y — Bl — ) (B — o,

visionally placing the latent Toats

If we set up aga;
in t
zeroa below, but leaving the “&lement
termined by inspecting the ‘products,
Previous cage only in¢having o un

%

i

- position adjacent fo g)}z'r of repeated roots. We have in fact
"1\'.”.. . [ _1 -« 1 .17
AR | B 1 vy
\\Q 1. a? 20 1 g2 28 o2
O ) 1 . a2 3a p 387 5
\ a” da* 3g v
) | at 4g3 B2 B 4B3 A
| bg b B, b, b, 61 g L dd Bat1p,e g% Bt 45 |
RTINS EEPRRS I T PR
e 1 . 81 v ol
| e* 2 1 B2 2B 42 e,
o o 3a? 3g B2 3p2 78 - B, =
a? 403 g2 8t 483 9t e
Lo Bat100® grpga,s | ) v |

Q.
A

(6) -

{7)

tftuent, Qifference-product, so thut H is
the equation BH = IiC, pro-
he diagonal of €' as belore, with
s above the diagonal to be de-
we find that ¢ differs from the
i in the superdiagonal at every
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[« 1 . B 1 47
a? 2o 1 B2 28 4°

a® 3a* 3a  B% 38% 43

at 4a® BaZ B 485 44 |7
a® Bat 10a3 5 5B 45
a® 6a% 15a? B 685 45

(8)

- the identity of the elements in the extended products depending ong™
the simplest: additive properties of binomial coefficients, together
with the following appropriate conditions satisfied by the rep\éékte}l '
and nnrepeated roots, . S

)= X B, 20— B — B2 — BN — A — by = 0, darB, v,
&'(X) == 63— b, M — 4h,15— 36,00 — 2b,A— b, =B A=0, ,
a8 N =154~ 100,08 — 6,02 — BB A—b = 0,\0"  A=a.  (9)

This transformation of an elementary cg,rif:l}iual matrix B; by an
alternant mairix is readily seen to be of. general application; the
diagonally placed submatrices in thesderived classical form are of
typical appesrance ' \y '

\ a 1 .
Cifa)=a, Uy(a)= [“- ﬂ Cyla) = { . a 1} cees (10)
- .\’\.. . » &
and there is one of thésd isolated submatnices for each distinct latent
Y006 of B,. We ping’porhaps call them simple classical submatrices.
Since each elemdnbary submatrix B, of the rational canonical form B
18 isolated zt'\e;\n be transformed independently of the rest, so that
- the CI&SSiC?Z}(%nonﬁcaE form C is finally seen to consist of simple classical
Submatriees ‘(' (\), dsolated along the diagonal, all other dlements being
wer 0-’"1.? 45 to be observed that the same latent Toot a may be associated
with'séveral classical submatrices, the sum of the orders of these being
the totg] multiplicity of a.
We shall write this form as

C=[CelN], . . - . . . . (1)

where b — % Fpooo k3 A=a, B,.... In(8)above, we have p=3
and () = Cyfa), C3(8), Cy(y). Using a convenient notation called
¥ Segre the characleristic of the elementary divisors, we collect
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bogether the various suffixes % and write [321] to characterize (),
If, however, €' were to consist of Cyla), Oyfa), € Ay, e - v, we should
collect together the suffixes belonging to a and write [32)1). The

characteristic of an clementary matrix B, accordingle liffers from
- that of a more elaborate matrix B in having no enclusing round-

brackets ( ),

2. The Auxiliary Unit Matriz, ~
 The bypical simple classieal submatrix Ci{A) may be wrif fen AN T,
where U is a matrix with units in the'superdiagonal and ;;grbs,\cvcry-
where elge, Thus, for the fourth order, \

Ny

S
™

1., 7\
1. N\
U= ,
-1
and in general N
U =[], where e,-,--{:"::O; ¢ :J:“q_ - L .. (19)
~.’:'=1’ p==3—1,

This matrix U, which has
elementary submatrices B, is
of matrices that it seemg

:‘:‘.‘Eéad}’ played a part in the rational
80 useful an instrument in the algebra

L The magigss 0, p2, pra

) - UP? where U i of order P
each consis@'Qf” units filling o single diagonal, respectively the fitst,
second, Gy — 1)th superdiagonal, The transposed matrices
Uy ﬁ' \arly ocenpy the subdiagonals,

p B The Reduced Characteristic Equation of U is /7 = 0, and
<hlgher Powers of U are zero. The rank of U* is p — £, for £ < p.

IIL. T G(d) = Cp= a1 ¢ U, any polynomial function of Cis

In virtue of the commutative property of I, can be expressed as a
Ta,ylor’g 8eTies in powers of U, thus:

=fNI+ oy - % Faoza + L St el

(k—1)
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Hence the mefriz f{{',) can at once be written down. For_examp]e,

[.}. 1. . rw 32 81 1
M 5 2
if O'k _ . A 1 . , then 02 . . )\ 3)& SA -|,
L. LAl R 3A2J
py A

and in general ((C}) is persymmetric,

EXAMPLES i
A . S LI A
: { L1 1 cee 0K
LU= 1 , then 7%= , BF= U =10,
o £ & p
2. Evaluats tho integral powers of U7, If X = U'U on\P'W, thon X7 = X.
If ¥ 4 ¢ is the order of U, show that U™ (1Y + (P Us N
8. To prove thut the alternant | «®pty28%| of (g‘)\\&ﬁove is equal to the
differenco-produst & (x 3y 8), we merely observe that it vanishes, having pairs
‘ il, when o = B, @ = vy, &c. \The'numerical factor is fixed
by inspecting the diagonal. O
4. T instead of o, A% ... in the lastr,rc;iv of the alternant we have f(x),
FB) «.., where fix) is a polynomial, we\déduce similarly by the remainder
theotem that the altcrnant | of BLy?f (&)} divisible by the difference-product;

[ By f(8)h= 0, mod A(wfyd).

5 O we divide the a,ltéi';:mt oo + BYL{e + 282 B%(B + BYY®| by
A0, %, 2A). A0, A) and préceed to the Kmit, &— 0, we obtain the confluent
al'termnt of (6) above. Wig alio evaluate it, by means of Ex. 3, as the confluent
differcnco-producs in (P mamely A{ (o) (BP)v)-

In t-_hn goeneral cobeludr t; oecurs in v; columns of a differentiated alternant,
and a; in v colugna,. swhere o, == o, § << j, then the alternant s equal in value
to the confluentdilfi:rence-product TI{e; — e pivs.

" i .
. B Ir in.jt’m last row of the first alterpant in Ex. 5 we write f{a), &e.,
mst-.ea_d ,Qf %, ..., and proceed as directed, we obtain for the last row of the
"esultmg\a]temant the elements fluw), /(=) 7 (2)/20 FBY F(B) Flv)
e C}oduce #l50, just as in Kx, 4, that if f{z} is a polypomial the goneral
d-lﬁ?-\l'entlated allernant is divisible by the confluent diffcrence-product; e.g.

| «fa® g0 BB fly)| =0, modA {{uax) (BB)Y}-
7. Tind the rational canonical form B corresponding to the ciassical form

.|
Lot

R
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[H «+ 8, the leading submatrix is By, the corresponidinr bevariand fastor
being the quartic polynomial (A — o)? (A — B Thus £ his 1w submatrices
By, B; = [v] and two invariant factors. Characteristic [{21y 2

If & = @, then B has three submatrices B,, B,, B, and three iuvariant factors
(A— &) (A — a)%, (% — «). Characteristic [(221)1.

8. The classical form corresponding to

1. . V2 1 .
N . V2 . .
B= D L q|eo=| R i
—4 4 . — 3 )
The characteristic of ' is [22]. \

N
9. The number of Segre characteristios of order n without toun | dragkets is
2(n}, the numbar of Partitions of the integer #. The number of w.araiinSeriing
round brackets in a characteristic of m indices is p{m}. Henccygnumber of
canonical types for a given order can be found by combinatoryZamy sis.

. ¢*¢
3. The Canonical Form of Jacobi, o)

The classical form € can also he obtaine@.{sdzhout the intermediate
use of the rational form B, by a systematictbut in general irrational
reduction, which uses as a basis a canpnical form due to Jaeobi.
Jacobi’s form, like the classical, ha,s;t']:ré latent roots in the diagonal
and zerog below, but the e]emen@sfab"ove the diagonal are not further
specialized. Thus the form, 1N say, has the triangular appearance

A B my oy oy

4 .\i Yz Gaz Opy oy

It 0 el L 9
\ . . MY & B - 71
o™ e

- The"&(amformatmns used by Jacobi were of the equivalent kind,
r =PA\Q We shall employ only collineatory operations,

o (Lemma,— Y @ collineato ' .
\\Jiemma, tory transformation the matriz A can be
Nopought to the Jorm Ty =1y.), where the n — 1 subdiagonal elements
Yo Va1 -« o Yy W the first column are zero,
v Proogf—Since EVery square matrix has at least one pole (Chapter
s P 41) corresponding to a latent root A;, the matrix 4 has a pole

Y= Yo -y y,), where at least one component , is non-zeto:

t]l'lls Ay = )t‘-y It W.i.].]. be conve .e t I .
N - . nient f 3
: g G &ke Y as8 equaI o unl Y

the co-ordinates are homogeneous, If the pole
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y were the point £=1{1, 0, 0, .., 0}, then 4 would already be in
the form IY, since wo may verify at once that Ij€ = pyf.

If, however, this is not the case, we comstruct a non-singular -
matrix H,, such that Hyy = ¢; for example, if n=15, &= 3, the
matrix H, will have the appearance

R
I' T -{ _
H, == .y, - =1y JH 0 L (14
[—1 W J . \
=1y o \\“\

The kth column containg ¥y Fiig, - ¥ Y1 oo Yrdioill this
order, and what may be termed the kth complete diagong¥ iy filled up
with clements --y,, where y, = 1. By multiplication®it may be
verified that H,y = ¢, Since also dy= Ay, W, have at once
HAH 1 = )¢, N\
 Thus H; 471, is of the form I', where yii== A;, and the Lemma
i praved. Tt is to be noted that A; may qite"well be zero.

Theorem.—For any given square. j??éaém A =[a,] there exisis @
non-singular mateic ¥, which transforms A into @ Jacobian canowical
Jorm T such that T' = HAH*.(" |

Progf —The result follis@;é"by repeated application of the Lemma.
In the first place the matrix 4 is transformed by H, to I, = H AH, 7.
I 4, is the submatAiz obtained by deleting the first row and first
Cjﬁlu'mn of Ty, thetiujéll can again, by the Lemma, be reduced to a
similar form %“& H,A,H,, so that the transform of 4,
™\

[1 J P [1 1Tt - HAH—l[l : ]_1 15
~CH, ol Hz—lj_ [ _Hg] Wl n, (13)
now hag subdiagonal zeros in the first two columns, By at most » — 1
such steps, each involving collineatory operafions on submatrices of

1?[1%12 and lower order, we replace all subdiagonal clements by zero.
(The superdiagonal elermcnts do not at prescnt concern us.) The

continued product of the transforming matrices [1 H :I thus yields
. %

a mm:('ﬂx H, which reduces A to Jacobian form HAH* = I\
E420) 6
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Corollary.—Fn I the diagonal elements are the 1 Jurens rools of A,
arranged in any preseribed order: for [d—M]-:ip o AT'|, which
on expansion is obviously equal to (—)" (A— y,) (A-- Pul oo (A=)

Also the steps of the proof show that the latent painis, and there-
fore the latent roots, can be taken in any order.

It is usual to arrange the roots according to the frequeney of re-
peated roots, in descending order of multiplicity, {io convention
being displayed by the example o, a, a, 8, 8, y- The Jingonal ateay
of latent roots in g canonical form ¢ or T forms, as I wéed) the
vertebra of the matrix; perhaps it could be called the pdcleus of 4

or of any transform HAf-1 4

- The Classical Canonical Form deduced from that"‘c?f\-l acobi,

It will next be shown how, by collineatoryngperations of Types I,
I, and III (p. 11}, the elementg above thestideonal in the Jacobian
canonical form I may be eliminated of Gdjusted in sueh a way a8
to yield the classical form (1, A guidingprinciple in the ter stages
15 the invariang Property of chains formed by linking nen-diagonal
elements in 5 manner now to hpf &escribed. Consider, for cxample,

the f_ollowing combination of%wo canonical submatrices corre-
sponding to the same latentyoot @, namely
o\

N

4

£€ 3
+8 3 —

\\ N i

£S o | = a L)

A K -
\\ 11_‘he hon-zere elements above the
fall into twe chains (1, 2),(2, 3), (3, 4)

_(l, 2}, for éxample, being linked to (2,3
mde‘x of the former is the

diagonal occupy places which
and (5, 6), (6, 7), the element
) by the fact that the column-
row-index of the latter, The two chains

' € B0 row-index or column-index in COMMOn ;
and an isolated chyip of length m — 1 involves an isolated submatrix
8 238y to soe that collineatory
(. 11) leave the Properties of chain—length a
for example, the chaing {1, 3), 3

substitutions of Type [
nd isolation inva-rianlt;
» 8 (5, 7) and (2, 4), (4, 6) agree in

B
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these respects with the two we have given above, and may be trans-
formed into them. The steps are the interchanges I,;, where 4j=23,
45, 34, 87, 56, 45 in this succession.

It i3 & lefp o form stairease graphs of these chaing as follows:

o]

Fiz. 1 Fig. z Fig. 3 % N
S 3

Fig. 1 iudicates $lese cluins bofore interchange: fig. 2 after the firéPiNterchange

Iyp: fig. 3 after ifie final interchange f,;. While geometrical lepgth of a chain

varies, chain-lengili—the number of steps—is fixed. The ehadug being isclated,

the zigzaps are nevor collincar.  What the interchange proetss does is syste-

matieally to dizentangle the chadns. 7 \\. .

We considir then the Jacobian canonic;al orm I, Suppose first
that there is o certain non-zero element @y ahove the diagonal, where
the latont roots aligned with 16, A; and );i,’ are distinet. The collineatory
operation col; -~ £ col, row; + & row teplaces ay; by @y — k(A — A;),
and in general also modifies elemetits in the ith row %o the right of
% and in the jth column ghede @, as may readily be verified. Tf
we take ke q,f(A, — );\ia,é Wwe may, since A; == A; then ay; is
replaced by zero. Now the elements such as a;; which are aligned
with distinct Jatent reets Tie in rectangles; and by operations like the
above we can clegh bhese Tow by row, beginning at the left of
the lowest rocy:,\’;\\:’hen this is done the submatrices of Jacobian
shape corres nding to single latent roots are isolated, and may
therefore Db\ lonsidercd separately.

We cimisider then a submatrix T,, of order m, in a form such as

o
h

) 3
N\ a4ty g i O3

Q.  dgg Ggq Cos
b se B Oy G g e
[ . . . a  dyy

. - - . 4

. {17

If the non-zero elements above the diagonal are such that there

18- ot more than one in any row or column, we may link them in chains,
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and, by bringing them into superdiagonal position v operations of
Type I, and iransforming them into units by operation, of Type 111,

as in Chapter II, § 4, p. 13, obtain simple classical subi-vi;rices,

. I, bowever, this is not the case we proceed by indnction, the
induction resting on the initial facs that for the i wm-==2 the
matrix I'y can at once be transformed into elassionl “mpe by an
operation of Type III. Let us take T,, in the form

P?n: [Pm--l Al:’: L (18)\
- o N
¢\

where I',_; denotes the leading submatrix of order s ~{Jy and 4,
denotes a column matrix of # — 1 elements; and let pslssume that _

Tuiy can be transformed ino classical shape €,,_, bnh fulrix I,
Then we must have D\ Y

[1?1 I] [FTH f:] [E{I—l J%{Cj iljl (19)

where Dy = H, 4, ang where, written ovtin full, the right-hund matrix

hag the appearance, e.g., RS
a1, ,:.':.::' -
S S
iv"\a N A
LTI R T . (20}
’ a1 da:'
o "
:..\,, L.« . . - . - a

A\,

I 3{1}7\ element d,, hag 5 superdiagonal unit in the same row, the
opezation col,, — Gy €Ol T0¥zty + & row,, simply removes dim
without further change. Hence we may remove any such elements

# 80 that now there is gt 0t one non-zero element, excluding
the diagonal, in each row. For instance, in (20) we may at once
27 == tlyy = 13].1;,7 =0. If there still remajns more than
; n the mth column as here if d,, 4= 0, d,, 4= 0),
we form (j,hams and proceed in 4, ma.nn(er exempﬁﬁggd:f—witllgflt+1055
of generality by the chaing (L, 2), (2, 3), (3, 7) and (4, 5), (5, 6),
(6, 7). ’v:Ve shall show that the element (6, 7, or g‘i,':?,‘can be
annulled in three moves by the earlier chain, Tn fact the operation
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rowg — h row,. col; 4k coly, where h = dg,/d,., annuls (6, 7), but
introduces a {5, ) because of the (5, 6). This (5, 3) is similazly
annulled by weens of (2, 8), but a (4, 2) is introduced through
the (4, 5). Lustly the {4, 2) is annulled by the (1, 2), and no
element 1s Int: «dd, because the chain commencing with (4, 5)
gives out, haviz no earlier clement, It thus appears in penecral
that all elemenis in the last column may be removed by collineatory
operations ex the one which belongs to the chain of greatest length,
an earlier chs
chaing of equal tangth. Lastly the isolated chains may be brought
into classical uperdiagonal position by operations of Type I, and (b,
the element broncht there from the last column is not unity, ig car
be made so by zu operation of Type IIIL. A\

The induciion is therefore complete and, when carried\ eut step
by step and apilied to the separate submatrices, it prowifef a means
of bringing o wutrix in Jacobian form T' to classieal form C by
collineatory tiznslormations, x\\

LI

5. Unigueness of the Classical Form: Elengeﬁﬁrir Divisors.

It was fowid in dealing with the rational’ canonical form B that
the invariant, {.ctors of the chatacteristioWtatrix 4 — AJ were unique,
being given by the determinants | BiAY]. The distribution of latent
Toots among thcse determinants isstherefore invariant, and thus a
factor like (A — ;) will ocour LQ the successive determinants | By(A} |
with invariant exponents ey By, . . ., Where, since each | Bi(A)| is,
a8 we have soon, a facto \é the preceding one, we must necessatily

The factors (AN are called the elementary divisors corre-
sponding to the ot root A; of the matriz A. From the manner m
which the form ) has been deduced from the form B, we see at once
t]f'at these elp?'%n.ta-ry divisors ave the characieristic determinants of the
sumple *513{1\6:93’-?:&3 submatrices in the camonieal form C. This amounts
% identiffing the exponents of the elementary divisors with the
orderdv6! the simple classical submatrices, and could alternatively
?OB established by investigating the H.C.F. of minors of various orders
I the characteristic determinant of C, just as was done for B in
Chapte]; V, p. 55, the superdiagonal units playing an analogous rdle.

he elementary divisors are invariants in a field which includes the
late].]t roots as well ag the elements of A4; and they are related to
the invariant factors E,(A) thus (with the order of p. 23 reversed):

I Ei()t)_‘—: (}t — /\1)551 (A— )‘2)%2 ()1—- /\3)"353 . i=1,2 ... & (21]

eing preferrod to a later in the case of alternative
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The Segre characteristic [(en € .- ) (eress .. ). . ] ix now wmore
naturally written as the integer matrix

€1 € ... .
(6] = €1+ ... | BEey =,
T oo {22}
where Ze; = p, Se,, = 9 -+ .; and where ¢;; > e, = ., . ’
i J

I
’

The sum % of the integers on the ith row gives the ordiv of\he
ith invariant factor | B{X)|. The sum &’ of the Jth colugnlgives
the degree of repetition of the Jth distinet latent root A Q

From these facts we see that the canonical form ¢! isgilique, and
that collineatory equivalence, or similarity, of matriceh is ‘completely
expressed by the invariance of the elementary ,di}isors_. or (if we
prefer) of the invariant factors, Further points ofhiterest are brought
out in the following examples, 7 \d

EXAMPLES\\)

1. The elementery divisors of the matl:ié’..(?"in Ex.7,§2, p. 63, arc (1 — )},

(A=), (A\— B)% The chamcteristiq.{é:{f

*

2. Reduce to the canpnical forme B, €, and T the matrix

ANT2 L 9
W _| 681 4 4
,\\A_ 0 . . 4

RS 7 -7 2

A\ .
baving given thutione unrepeated latent root iz 2, and that the others invelve
repetitions, "\‘.\

3. Derjugdation (8) direct
canonical forin of the classionl.

Letthe matrix 4 of - 49, whose rational cancnical form is B, be talen to he
A=\, (M], whero Cu{3) = Cyla), OBl Oiy). and where o, 8, v all differ.
\t-ing with the vector 4 — (L, 6, 01,0, 1] construct the chain w, wd, wd?,
ud, udd uds Thage X veetors will he found to give the required H, namely,
the second matrix of relation (8) above.
" The computation of thig chain illustrates property IIT of § 2. Any vector
% can he chosen, provided that its first, fourth, and sixth elementsy are non-zero.

We have naturally chosen tho simplest, u, consistent, with the condition | H| & 0.
Thiz method applies to any 4.

Y from the theorem on P. 49 by finding the rational

. 4. To derive the Classical Form by the Methods of Chapter V.
First redue

factorized. 4 %o the rational B, finding it R.C.F. p(4) which must now be
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et Gl = (% — )Py (h— B .. (A — y)Prm= (h— @)% G (),

where ¢, 3, ..., v arc tho v distinct latent roots: (3} doenobes all the factors
not involving =, su that {a) & 0. Take an arbitrary veetor # of maximum
grade p = (3, - 9, - ...+ p.): sod now consider the vector

v=wyld)=u(d — BI. .. (d — v

wlentically zero since the R.C.F. of w is of degree greater by p,
of . The chain of vectors

v, ¥(d —el), v(d —al)® ..., o{d—alm?

This # cannot }
than the degtie

N

terminates; {ui the next o{d — afi = up(d) =0, since o{4)=0.
With the wotativn of p. 49, lot y = 4Aw, £ = Hw, v= Hy; also let "\~'\.
i]_ = x, L 3 ’\“\
5.12 = %(A — CLI)-’U, (""‘:

at ¥ ;

= vld — a7, N

] in of veetors gives us the first p, Tows thz-, matrix H. O
expanding the first p) rows of n = Hy, we have A

A

7"

1 = vy = vdr = af; + &,
o= (A — wdly = v{d — al) A’x %;aiz -

ne ot oA — ey = v{dad P de = o,

sinee w{d — 27" 2 (4 — o) = 0. Bui‘?’r}’;z HAHE: benee the first p, rows
of the classical runonical #.4 H-1 haveBeen found, agreving with the form already
adopted, e.g. if p, = 3, ~

s\
0, \. e 1 . El
| =. = 1:| & |-
Afis,‘ ) £,

\ ¥/
Further p, rowsNafo derived from a chain initiated by the -vestor
ulo(4}(4 — 31)Pas Gand 20 o
An m'glllllem\{n&logous to that of p. 51 justifics the linear independonce of
the first prowsob H.

5. Giveihe characteristic [(3, 2) (4, 1, 1) 5, 2] and the distinct latent roois of
& matrim S determine ils order, rank, tnvarignt factors, elementary divisors, and
s rabigniil and classical canondenl forms.

Write the characteristic aa
3 4 5 2
[2 ! }
1

tows referring to constitucnts of invariant factors, columns to distinet latent roots,
and clements to distinet elementary divisors. )

There aze four distinet roots s, B, Y, & say, in this order. The classical form
bay disgonal

Calads Culo)s Cy(B), Co{B) Ca(B)r Csly) Cold):
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The order s n =38 4 2 4 44+ 1+ 1454 2= 18 The invariant fnctors ure
(= afP A= B (R — 1P (A — 8%, (A — a)* (3 — Bl (2 — =)

The elementary divisms are (A — e, (A — )% (h— ), (A— 5 {n—p),
(A= ¥)% (A — 8)%. The rational form has diagonal By,, By, B, sa:.

If all «, B, v, 8 + 0, the rank iz 18, If ¢ — 0, the ranks of yfc), (i(a), Le,

I .\

ore 2, 1, and that of 4 i8 24+ 14+ 441 4 5+ 2=16. In gy€:m! the
rank is % — o, where o is the number of elementary divisors of tray 28 (Tf
= 0, the rank is 15; ifyord=0,itis 17, N

T § ]
6. A matrix equivalent to a diagonal mateix has a charaetbristic consisting

solely of (possibly bracketed) unity [1111 . . . 1]. 1t has linca.l:’\ek)}uenta.x';. divisors.

7- To finil a Real Classical Canonical Form for a“Bell Matrix,

Let the reduced cheracteristic function of 4 ,bs}résnlved indo yeal Tactors
which are linear, when latent roots are real, adiquadratio (A® — ;.4 — gl
when pairs of latent roots are conjugate complex)iumbers. Hence » w5 g are
real, and p? + 4¢ < 0, )Y

Corresponding to {32 — P — g} ocourting £6 & power 7 in an invaTient factar,
we tan take a modified simple classical @ubatrix

. 1\;’:.'". .
FRa

N\ - 1
‘ \ - ¢ p 1,
’\\ R |
N g P

consisting of r paingef Tows (the illustration has three pairs) with 2r — 1 units
on tha superdiagonal, and with 2, p placed diagonally upon the even rows.
The proof is: analogous to that of Example 4, Write

OV ey =(a2_ py —dVd), e=uf(a),
whqrt{u’;hu.s maximum grade. Now construct the chain £ = v, £, = vds,
QT P e, Ey= (A~ pd gl G, o4®  pA gl
\gq 7 vd (A2 — pd — Ity terminating with £,,, since the next £ confains the

2er0 fuctor p{d), Let £ — A ¥= Az, n= Hy, = HAHE. Then, pro-
ceeding ae before, the corresponding section of the matei HAH is exhibited by

T S £

I—’?z_‘ g » 1 . ., -! Ea-l
M = - - .1 L, PR E:{ .
[mJ « v g p 1, J E,4J

8, The real classical form for the seven-rowed matriz, whose characteristic
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function ig {n - 4) (A% — 2h + 3P and whose reduced characteristic function
B — 4 {7 2 |- 303 1s

D

-3 2 1 .

oo 1

. .—3 2 . ie
|
3 2

- §

9. Matrices oxist with prescribed invariant factors or elementary divisors{\

subject only - the fleld restrictions and the inegualities (22). .

10. Show thai the latont roots of the mth compound of A are the \hi‘-@ja

products Tia,, <% the latent roots of 4. {Rados, 1891.) ™
=1 !
[If ¢= G477 [H} 40, then (0m = Him A [HTENHm] & 0,

by Binet-Cauchy and Sylvester. Examine the form of tmy ], ~~'\\

11. If 4 is vinu-singular, the latent roots of 4B are the, same as those of BA.
More genera : latent roots of a product of ma,trit}%b\ABG ... K, of which
one matrix ; t 1s singular, are the same ag thogé{of any other product of .
the same mairices in eyelic order. N

[ABC... K= A(BC...KAYA | A} + 0]

12. If flx) @5 o scalar polynomial in 'w,::;'h'e latent roots of the matrix f{4)
are f(x;), where 3, 4= 1, 2, ..., » aze\tHe latent roots of 4. (Sylvester and
benins, ) - N

[By Chapicr 1V, § 3, if C— HAR™, then f(0) = H.f(4). H, Thus (ibid.
§6) {0 and F{) have the samdeMatent roots. Examine the form of f(C).]

13. Extend the above to\%e' function f{4)jg(4), |g(A)] + 0.

6. Scalar Funetions‘)of “a, Square Mairix. Convergence.

For varioua@%hng it is useful and inberesting to extend the concept
of a functignMel a matrix 4 to a wider class than polynomials or
quotients of, polynomials with scalar coefficients. If f(z) is a power
serles jia complex variable z, convergent in a certain region of the
cog'f;‘l?x planc of 2, then the series can be used formally to define
the urresponding matrix function f(4), and we shall say that f(4)
tonverges provided that all of its n2 clements converge. Hach of these
elements is itself a rather complicated infinite series, but the question
of convergence is resolved by the aid of the identity f(4) = H-LF(C)H.
For (as on P- 7. Ex. 4) the diagonal of f(C) contains elements f(A.),
and the superdiagonals of the submatrices contain derivatives up to
FEL(X), where J is the highest: exponent of the elementary divisors

for the latent root A,, that is, % is the multiplicity of A; in the R.C.F,
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of 4, Also the elements of H are all finite, and so are those of F-1,
It follows, on multiplying out, that the condition of convergence of
J{d)is that the funetions f(A,), 7/( A o S (A should converge for
each A, From the theory of infinite series we know that all of these
functions diverge if A; lies outside the region of converyence of f(z);
that if X, lies within the region, the convergence of f{ ;) entails that
- of all derivatives £ (A,); and that if A; lies on the boundary of the
region the earlier derivatives converge provided that the final one, here
- fEDY, converges. These conditions, extended to each latent reat,
give the necessary and sufficient conditions for the convergende® of
8 matrix power series, ¢\
" In the same way scalar functions defined by inverse fudoyiol series
. converging within “ half-planes ” have rmatrix angldgtics  which
converge, provided all of the latent roots lie within thgse half-planes;
and matrix continued fractions can be defined, converging it none of
the latent roots lies on any singular curve of the\edrresponding scalar

conth_med fraction, \\
o ) EXAMPLES (¢

1. The matrix function ¢4 always converges,"

2. The matrix log (1 + A), defined by\the Iogerithmic scries, converges if
all the latent roots of 4 lie in ar on the unit circle, exchuding the point 2 = —L

The theory of convergence “of matzix functions with scalar coeffi-
clents can thus he founde(t on the classical canonical representation.
" A rather different approch’ towards the expression of the funciion is”

by way of the R.C.F. ¢t.4. Consider for example a matrix power serics
f(4), the latent 108t of A being within the region of convergence of
(@), so that f (Y tonverges. If the R.C.F. of 4, let us say ¢ (4),
-18 of degree pythen the matrix powers 42, A#41 | are not mercly
cgngruengn’dulo $(4) with certain polynomials of degree loss than
» thej'r; actually equal to thoge polynomials, since i (4) = 0.
_ Coygaquently, by substituting these residual polynomials in the power
’.39436?5 we derive g(4), a polynomial in 4 of degree less than p, which
RAD 3 certain sense the residue of the infinite matrix series f(4)
mo.dulc.v ¥ (4), and the coefficients of which sre convergent infinite
series involving .all the scalar coefficients in f(z). These scalar co-
elficients in g (A), though of complicated Jorm, can be expressed by means
of 5?&‘6 recurrence velation corresponding to the reduced characteristic
.functwn.' The important fact iz that 5 convergent function of a

Matriz 4 can be expressed ag & polynomial in A, of degree less
P _ .
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EXAMPLES o
1. I A% =g, -- 0,4 + ¢, A%, then A4= énczl 1 (g F €10)A + (& - 62047
Find guadratic polynomials to express A5, A8, : _
2. If §{4)— A% — A — I, the residues mod { of 42, 4%, 4%, .. ,are 4 } 1,
24 + 1,34 4+ 21, ..., the coefficients of 4 and of I heing the Fibonacei numhers
1, 1,2 3, 5 8, ... defined by the recurrence relation ¥, — yopy — =0,

~#,=0, ;= 1, or by the numerators and denominators of convergents to the
continued fraction

Prove that if f(4) = (I — LAY, then f(4) = 2(4 - 2I).

3. H a matrix A has latent Toots w, 3, v with respective characteristics 3, 2,1,
and if «, §, v lic within the region of convergence of & function f{z}, prove @z?f a
polynomial representation \.

JAy=pof + 9 A 4 p, A% + ..+ p; A° \‘
is possible, by comparing elemonts in the two forms of F{C). \\

) fi)=pof + ...+ p,0% (i) Compute F(C) frod N, p. 62. The
comparison is ther found to depend for consistency on a sehobsix linear eguations
i Pg, Py, -« P;, the determinant of the equations being the confluent alternant
Af{{aaa)(pB)y}, which is not zero.] ~

) ¢ 3
A

7. The Canonical Form of a Scalar Mafrix Function.

‘The classical canonical form of a\matrix function f(4) can be
deduced from that of 4, provided tbat it is known which of the earlier
derivatives f'(z), f''(2), ... is the first to be non-zero for each latent
root of A4, O\

Theorem.—If £'(A) < Oufor each latent root ) of A, then the Segre
. cfaamc&grﬁsﬁc of the magiry T(A) is the same as that of A.

Proof —If O, (), %e one of the simple classical submatrices, we
ha,\re’ for eX&IT:}pLG.when =4,

& [ r@ e g |
~O : o |
NG e = f@ e g f@ | s
fa) @
L fla) |

NDW. if f'(a) 4= 0, the later derivatives in the rows may be deleted
by GO{hneatory operations of Type IT; then f'(a) can be replaced
by unity through operations of Type I1I, so that finally we have a

L
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simple classical submatrix similar to Cile). Since this can be done
for each latent root the theorem is proved.

If for any latent root A, the first non-vanishing derivetive is f&#(),), -

‘the modification in the characteristic for A; is readily olitained by the

theory of chains. Suppose, for example, that £''(},) is the first non-

-.vanishing derivative, then the surviving non-diagonal elements in

that submatrix after the first reduction are (1, 4), (2, 5), {3, 6), (4, T),

+ -y Which fall into three chains indicated by L, 47, ...,2.58, ...,

- 3,6,9. ., respectively, The general result is analogous wnd evideut,

EXAMPLES ¢\
. Z ’\ “
o 1. Disouss the characteristio of flA) = 4% — 24, where the wiudnical form
Ais 3

N
T
& R

1 1 . o\
[ l .:|' “"\\
3 \/

For 4, [21]; for f(4), [(A1y): fy=o, f'(&%‘o-
2. Do the same for the function 4% — 342 —is.ﬁA‘,’ where

11 ()

Iag® .
C= .
[..v‘}‘ 1 ]
24"

"8, Ma.trix_Determinants:m{Sylvester’s Interpolation Formula.

Consider the quot'{éﬁt of alternants | a® 8283 £ (A} [/] o 8192 83],
a8 in Ex. 4, p, 63 where a, B, v, 8 are distinet and f(A) is a cubic
polynomial. Smge f(2) is a cubic the elements in the lowest Tow of

the numerator Jeferminant are s, certain linear combination of those
in earlier Tows; thus the numerator is zero, -The denominator, being
the difference-product A (a8y3) of ditinct variables, is not zerc. By
expanding the fumerator in terms of the elements of its lowest row

i@(pbée:ving that the co-factors of these are all difference-products,
\Wl‘; Bbtain : '

N =3 f@=Bl=—na-8y
Teid e B e ey 9

't_he We]lrlmown interpolation formula of Lagrange, by which the
.pol_yn.omlalf()x) is determined from data f(a), f(8), Fp), f(8), and in_
- general ‘a polynomial of ‘the nth degree is determined from # -4 1
independent; datg, '

Let us suppose next that certain variables coalesce, for example
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~ that B, v, and & coalesce to the one value B, the data now hecom_iﬁg -
fla), FIBY, f(BY f'{B). We replace the former quotient of alternants
by a quotient of confluent alternants, in this case by '

| «* 81281381/ (A) | [] o' 2838 {.

The numerator vanishes for the same reason ag befors: the de-
nominator does not, being the confluent difference-produet A{a{BB8)}.
If we proceed to expand the numerator in terms of its last row, we
shall find that the co-factors of f(a) and f(B8) are confluent difference-
products, but that those of the derivatives f(B) and f'/(B) are not <
quite 50 simple; none the less the expansion can be carzied out, a
© gives a polyncinial expression for f(A), with coefficients in whichithe
data f(a), f{8), f'(B), f'(B} appear linearly. A similar procedure holds
for any number of confluences of groups of variables, )

We may apply the above results to the case of a polysomial ft4)
in a matrix 4, relaxing one condition but adding anothier: namely, the
polynomial £(A) may be of any finite degree, but t[c&mrmwes a, B ...

. the allernant are to be the roots of the R.C.F. 4f A.

It follows then, as in Ex. 4, p. 63, that «f{)r\the case of different

-, wots a, 8, y, 8 we have \

[R5 f(4)] = 0, ited AafySd). . . (29)-
But A (afysa) = Aafyd) (4 — aflj'(;i — BI) (4 —yI} (4 — 3]
' =A Sgﬁya) pl4)y=0. . . . . (26

Th“.s tho matrix doterniinant in the numerator of our quotient
vanishes as before, and gxpansion gives the result,

Ay 2% prgy A= BD) (4 —yI) (4—8I)
T T ha— a3

which ig Syjl%ster’s matrix analogne of Lagrange’s formula. It is
Most impOTtant to observe that, in contrast with the scalar case, the
Polyggmial F(4) is of any finite degree, but that this increase of scope
18 haldhced by the restriction that the scalar variables in the matrix
formula must be the latent Toots. : '
As might be supposed, when there are multiplicities among the
lstent 100t of 4 the reduced (4) — 0 takes the place of the char-
acteristic equation ¢(4) = 0, and confluent alternants supplant the .
ordinary ones. We consider, for example, ' .

| B 282581 £(4)| /| B 28126 | .

]

(27)
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As in Ex. 6, p. 63, we have B
|'B128'38 f(4) | = 0, mod A{a(BBB)A). . (28)
But Afa(BB)A} = A{a(BBB)} (4 — o) (4 — B
’ =B-appd)=0. . ... @

Thus the numerator of the quotient again vanishes, aud eXpansion
gives us the confluent analogue of Lagrange’s formula, which we

may conveniently leave in the form Q4
1 1 . . L7 O\
_ a B 1 ; 4 O °
2 2 (e
G—apfy=—| @ B 2B 1 T,

a3 83 382 38, :A"
,.:‘g} ‘
1@ 1o roGE

A\
(N
the general regult being similar to this. &\ “

% 3

I this were all, not much would ]:L’a.)?é'iieen attained, for the redneed
polynomial as given by such formule-as the above is simply a disguised
form of the residue g{d) of f(4)wod ¢(4). But the formula holds
also when f(4) is o convergen® matrix power series. In such a €480
we have f(A) = P (A) + 24N, where Pn(Ad) is the polynomial given
* by the first %-f- 1 termsg ti'f:}(h), and r, () is the remainder after those

terms.  In the non-cénfluent cage we have (on expanding the deter-
. mmants by their fibal columns)

| a®Bly2 3}‘\11(2}'1 =1 B985 po(d) | + | 0BLy280 r,, (4)|
»\ =Ia°ﬁly283r,,(A)], R 7))
Biﬂcﬁ,‘a's\re have seen, the first term vanishes. The surviving term
also.watishes in the limit, since the last row in it has the clements
\Elﬁ);"r“(ﬁ), Ta(¥) 7.(8), 7, (4); and the vanishing of these in the

6 18 simply the condition (p. 74} that £(4) should converge. We
conelude that Sylvester’s formula i valid for convergent metrix

In the confluent oyge we find likewise that the alternant in the

tirerator will vanish provided thet In the limit 7, (a), 7,(8), 7."(8):

Tn {B), 74 (d) tend o zero;  bub this again is exactly the condition

(id.) that f(4) should converge in the confluent cage: and we con-
olude that the confluent interpolation formula is available.
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EXAMPLES

1. I 4 I8 2 nonwingular matrix, the reciproeal matrix A1 can be represented
by a polynomial in 4, : . :

[Use the interpolation formula, or the R.C.F, A corresponding result holds -

for the adjoint matrix.]

8. The recipracal of the characteristic matrix, (4 — )™, can be represented
by a polynomil in 4, provided that | x| > | 3, | for each latent root 2.

3. Bepresent the function (1 — $4) by a polynomial, given that the R.C.F.
bld)= 42— A —~I. [Cf Bx, 2, p. 75.] ) _
4, I $(d) = A% — I, the polynomial for &4 is sinh o A+ rcoshe. I,

. o

8. If n is o pusitive integer, the nth root of a mairiz A eqn be 'expréssed,as\
a polynomial in A. \ N

9. The Segre Characteristic and the Rank of Mafrix Powers, N

As wo have scen, the Segre characteristic of a matrix 4{yith respect
to a certain latent root A;, consists of the first differenpes.of the powers
to which the scalar factor (A — ;) occurs in the, 8haracteristic de-

terminant | 4 — A7 | and in the H.C.F.’s of i Hihors of descending

order. Buf the characteristic can also be détcrmined from the first
differences of the vanks of the powers of the mdtrix 4 — A,I. Consider,
for example, & matrix 4 of the ninth order with two distinet latent
roots ¢ and B, the characteristic qu& vbeing {4, 2), that of 8 being
(2, ). The canonical form of A isthus

&

a P |
A (™ . 1
o=| A SN ihero 0p Bi— [ﬁ | o
2N By
It we write AQ:-V’Q} = U,, where I is the unit matrix of order 4,
we observe that’ (4, — oI)® has ranks 4, 3, 2, 1, 0, 0, ... for

P=0,1, 2484, ...; similatly (4, — o) has tanks 2, 1, 0, ... .
On thf; othier hand the rank of (B, — al)? is equal to ¢ for all values
of Pssnce the determinant has the value {8 — a)?? == 0.

It Wil be more convenient to consider not the rank but its com-
Plement with respect to the order, that is, the nullity, v=1n—r.
The changes in the nullity in our example may then be represented

by a diagram, thus:

P‘_"O,\'=O. p=1,v=2, p=2,v=4. ?23,\F=5- P=4,&G.,V=6-

A
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The number of dots in a row represents the order of 4,; and the
increage of the o-nullity with increase of p is intuitivcly seen to be
given by making vertical sections of the diagram, one place farther
to the right each time. But the diagram is a Ferrers diagram of
partitions of the integer 6, the total multiplicity of the latent root a.
Hence we have the following theorern:

If the successive differences in nullity (or rank) in the matviz powers
(A= AP, p=0,1,2,..., are regarded as a partition (coiled the Weyr
characteristic) of the total multiplicity of the latent root X,, then the don-
Jugate partition ts the Segre characteristic associated with A A

~ An alternative statement of the theorem may be givéd 'in terme
of dual sets of numbers. Two sets of integers, for examplé [0, 1, 2, 6]
and [2, 3, 4], are said to be dual (or bicomplementary) with respect
to the complete set, here 0, 1, 2, .. ., 6, if the second sct is made up
of the complements with respect to n + 1 (herdVEY of the integers mof
wncluded in the first set. Thus in the egathple above the integers
3, 4, 5 do not appear in the first set;_afd their defects from 7, Te-
versed, are 2, 3, 4. Since the first differences of the integers in dual

~~ sets are known to form conjugate,pariitions, we have the following

theorem :

*

The mlities of (A — ATPNP=0, 1,2, ..., form a sef of integers,

 the dual of which 1 the set formed by the powers to which (A — A;) ocowrs

i the characteristic d@tﬁ‘h@'ﬂam of A and the HC.F.’s of mnors of
descending order. X\
O EXAMPLES

L. Verify the\dual nature of these sets for the illustrative example used in
the demunsmjat(on.

a 62. Th{ﬂ:;-;ﬁém definition of conjugate partitions is this: If the integers -
y Oy G,

in descending order of magnitade, and if » — pa -+ gh 4 re + sdy .
where @, g, 7, s are also positive integers, then the partition of 7 so derived is indi-
osted by (a”B%7d%); the conjugate partition is (of o 5t~ — 5 —r? 2 s —r—q° 2}

~Whote x=p -+ g v+ s Show that this definition also leads o the theorem

<\ above,

10. Historieal Note.—The form T was obtained by Jacobi in dis-

- cussing bilinear forms uAdz, which, in effect, he reduced to canonical

form vl'y; J. fir Math., 83 (1857), 265-70; or Werke, 8, 535-90.
The classical form C is first found* in . Jordan, Traité des Substitu-

" *The canonical form of a family of quadratics given by Weierstrass in 1868, dis-

cussed later in Chapter TX. {x ki - . ent
and the matriceg Byprf!iue'tfiﬂc.m ]llghly ;elevant, but the reductions there are congru
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 tions (Paris, 1870}, p. 114; the matrices there were of positive integers
modulo p, the determinants involved being “ non-singular ”, that is,
prime to p. Frobenius and Landsberg, in papers cited in Chapter V,
obtain the bilinear form v0y. Dickson has extended the result to any
field; Am. J. Math., 24 (1902}, 101-8. The canonical reduction of
bilinear forms has received new and thorough treatment recently
by R. G. D. Richardson, Trans. Am. Math. Soc., 86 (1924), 451-78.
The steps which we have used in reducing I' to C were suggested
in part by an elementary exposition of H. E. Hawkes, Am, J. Math.,
32 (1910), 101--14, but the prescription there given (p. 108) iz in-
adequate without some further principle, such as the formation .of
chains. A
The theorcin usually credited to Sylvester, concerning the latent
roots of a function of a matrix, was not given in full by fum until
1883 (Phil. Mag. (5) 16, p. 267), though he had given ithr’the squaze
of a matrix in 1853. (See Muir’s History, I1, 123.) Frobenius gave it
explicitly in 1877, J. fir Math., 84, p. 11. RN
The formula of matrix interpolation was asuﬁly mentioned by
Sylvester without proof; Collected Works, 4, p?hll. '

The deduction of the confluent from the. simple case by differen- .

tiation was vsed by Jacobi (1825), Weike, 8, 1-44, for the theory
of partial fractions, which are obvieusly allied to the above inter-
polation formmulm, while the application to a matrix function f(4)
was given by Frobenius, Berlin-Qitzungsb. (1896), 7-16. :

The theorem on the convégence of a matrix power series is due
t Bd. Weyr, Bull. Sci. Mth., 11 (1887), 205-15. The full statement
for multiple latent roots)is to be found in a paper by K. Hensel,
J. fiir Math., 155 (1926), 107-10.

Concerning alterndnts with differentiated columns we may refer
bo Muir’s Hisigrgy IV, p. 178, 201. Tt is a little remarkable that the

alternant tragisformations of {6) and (8) above should arise from the -

nverted prosedure of reducing the simpler form € to the more com-
_P-]matﬂdjfﬁm B by the vector-chain method of Chapter V.

_ The transformation of B into by the alternant matrix was in-
dicated by 1. Schur, for the ease of distinet latent Toots, Trans. Am.
Math, Soc., 10 (1909), 159-175; and proved for the confluent case by
A.C. Aitken, Proc, Roy. Soe. Edin., 51 {1930}, 81-90.

(& 120) ) ' 7

QY




CHAPTER VII

CoNGrUENT AND CONJUNCTIVE TRANSFORMATIONS:
QuabraTIO AND HERMITIAN FoRMS ™\

" Tt was pointed out in Chapter IV that the Jinesc “ranglQrhsation
of the variables of a quadratic form 2’4, or of an Feofilitian form
#'Ax, involved in the one case the congruent transfopwigtion H'AH,
in the other the conjunctive transformation A ARy he matrix 4
- being respectively symmetric or Hermitian, It."‘%ill be convenient
b0 consider these special cases first, and to reSeve till later the dis-
cussion of the cbngruent or conjunctive tr@n}fbrmation of a general
- matrix 4 in the field. S\

% 3
NS

" 1. The Congraent Reduction of a (;o,n:ie.'

* The initial steps of the reduction’ of a quadratic form to a sum of
terms involving squares only (28 commonly phrased, “to a sum of
- 8quares ), which is the same’ Process as the congruent rednetion of
the symrmetric matrix ACof the form to diagonal canonical shape,
- depend . upon whether; tho matrix 4 has non.ero elements in the
- diagonal or not, The k}%jzﬂg features of the reduction may be illustrated
by a well-kmown,exalnple, that of referring a conic

$S@H+ by o2 - Ufpr | 2gan 4 2hay =0 ()

to a selfconjugate triangle of reference, the co-ordinates being homo-
: -genequs'.\ or first vertex of the conjugate triangle any point R not
Y lying on the conic may be taken. For the .

-second, any point § lying on the polar of R
but not lying on the conic may be taken; and
for third, T, the pole of RS. Evidently RST
18 a self-conjugate triangle; for it is readily
g ] verified that each vertex iz the pole of the

OPposite side. In the general cage there are «? ways of choosing
» 0L ways of choosing 8, and w2 ways of choosing the triangle. -

[T-h.e number of degrees of freedom of choice for » variables would
be dnn—1)]

82
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Analytically, if the coefficient @ <=0, then the vertex {1, 0, 0}
of the triangle of reference does not lie on the conic. We take this
vertex as the‘ point R, its polar being az + by +g2=0. In ¢ we
collect all term: involving z into one perfect square expressaon, and

- write (followiay the conventional notation)

¢ - oz + by + g2)* 4 Cy? — 2Fyz + B2%Yfa, . (2

where ¢ = ah — A2, &e.

fa kg /
Again, if &= |k b f|, and O =0, we proceed similarly with
AN
g [ ¢ ~\
the remaining terms, writing PN .

Oy — 2 Fys + B22— {(Cy — F2)? 4- aAzg}{C’ .G

since B — F2— ¢ A. Lastly, if A == 0, this brifigdy to the form
N
b= “-151 + aafa + %fi
Where & = ax - hy + gz, fz == Oy - Fz &= Az

. . @)
ay == e, ay= 1/a0, % 3 = lf()&

Such a process, which is mtlonal and terminating, can obviously
be extended to quadratic forms.in 7 variables, provided that at each
stage the square of some unre.duced variable has a non-zero coefficient:
~and the example illustr es{{ahe first and lea.dmg feature of reduction
- % congruent canonicahfo

A second fcaturu abises when the conic circomscribes the tnangle
of reference, &0 hat a=0, b=0, ¢=0. In this case the above
argument breakadown but since the coefficient of at least one product
berm, Jet; us B.\Qda i8 non-zero, we may use the trianglez = 0,0 4- y = 0,
®— ¥ = 0\as a new triangle of reference, one of whose vertices is not

_on ihe, ’801’1113, and the original method may be continued. The re-
‘d‘l@m applies however specialized the conic may be

" 2. The Symmetrical Bilinear Form.

If we subjeet a quadratic form ¢ = 2’ Az to the polarizing operatlon

i

]
_ % 2 ' Yiz 5. e obtain the symmetrical bilinear form

: 5
yde =< L Yilg®s @5 = Gign + + = .(‘))
ihi=1 :
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which can also be written 2’4 y- If we regard & and y as points, then
$ =0 is the point equation of a quadric in n — ! dimensions, and
y'Ax = 0-is that of the polar of y with respect to the quadric. If
& n denote the points z, g referred to a new non-desoncrate simplex
we have o= HE, y= Hy, | H| 40, and the trunformed quadrie
is ¢’Bf=0, where B= H '"AH, as we have seen: consequently,
for the polar bilinear form,

YAz = 7" H'AHE = NBE= {3y, a {(Z&8:80 (6{
i a‘fi 185

We sce that whether we polarize first and change the, Yaniables
next, or vice versa, the result is the same. Polarization (8 therefore
80 invariant process in the group; and the theory el symmetrical
bilinear forms is no more general than that of the" corresponding
quadratic forms. N\

3. Generalized Quadratic Forms and Uongrue\tu? Transformations,

By a simple device of notation, L. E{Dickson has shown * that
most of the properties of quadratic forms’and Hermitian forms, and
indeed of more general forma ingluding both, can be considered
simultaneously. Following him wg'shall write

A'=g=[&¥;];'~ B'=B~— {gﬁ]s}
B8, |H|+o,

and interpret the sigh\~ as follows: either the matrices 4 and B
are Hermitian, and the ~ hag the gignificance of the bar-sign denoting
conjugacy, or glédsthe sign ~ may be ignored and the matrices are
symmetrical o ¥n’ this way two distinct but parallel sets of theorems
are covered\by one notation, which extends to the forms themselves,
80 that the Hermitian or quadratic form is now written

(M)

al
\$

"

O Tdr= 3 Ti0Tp @y, == Gy, S )]
O ) _
and the [inear transformations are o — HE 3= FI& We shall call
such a form g generabized quadratic form. The device takes account
of the case when the quadratic form has compler coefficients, and is
11_06 merely a particular case of an Hermitian form with real coeffi-
clents. Indeed it ig g remarkahle fac&—elementary though it be—
that. an Hermitian form ig always reql, in spite of its complex matrix.

* Modern-Algebraie Theories (Chicago, 1926), Chapter IV, p, 68,
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This follows irom the identity £'4dz = x'4’Z, or from examination
of conjugate terms in the form.
The clementary operations of congruent transformatmn glven in
Chapter II arc readily adapted to the present convention: for example,
the congruent operation of Type II is given by

H=1I+ (k)

H"AH : row;+ hrow, ool-hhool, . . (9)
For instance | '

[1 5] [a 0'12} [1 ] [%Jrqamﬂauﬂqau “'12‘1‘9“‘2‘2}\
1 g q 1 By +-Gas, ‘ 32&\

The operation of Type I—the simultancous mterehange ‘of the
same Tows 25 columms—is also available, being, ag »W‘s,s observed,
congruent as well as collineatory.

o\
4. The Rafionai Reduetion of Quadratic and qumman Forms.

Theorem I—Any generalized quadratic fg}rm X'Ax can be reduced
by a congruent (or conjunciive) tmﬂsfommiwn in o fidd F to the sum
of T non-zero terms

G‘Iglél"}' ‘1253524“ ey :—,;ﬁrgfgrs q; = oy == 0.
~\
Proof —(i} If @)y = 0 1.1\ & = 0, then a,;, which is equal to &

can be brought to the lea position by an interchange of Type I.
() If all o, = 0 and; g == 0 (¢ < §), the operation row; -1 a; ToW;,
col; + & col,, pIa(‘es & non-zero element, 24, a,;, at the position @,
whence it can b&;}}rought as above to ay,. (i) If all ¢;; vanish, then
4 =0, 7 = Dand the theorem is already true but trivial.

(iv) I\QW consider the matrix product

@i n,- b 1| |8 o4l L. 1]

where the generalized symmetric matrix 4 bas been partitioned,
4, being a submatrix of the same type of order # — 1, and b denoting
the TOW vector [ayy, @yq, . . . , t4y,]. The product is seen to be

i N ]......(11)
. Al—b,ai%b .

A
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in the diag,;onal. By combining the various operstions we have the
identity

Z
Z,
S=K8K=| " SR E0, .. (19
%y
'\
. i_ N 2]
where, in the skew symmetric case, we can write P :ft.’_\_;;,\ )
e\
and o;=0. By final operations in the field, g, TOWyiy, Yt colypy,
we obtain the skew symmetric form, "G
u—-v S
- U — U; }
HSH=| 07\ , (20)
y

. ) . N ' 1 .
where there are & submatrices U T, and U= ,: . Ingerting

the variables » and Y, whereu = o s #= H y, we obtain the reduced
bilinear form ag desired,

uSzr— vH’SHy\%'v;yz-—- Va1t Oy — vy (21)
The proof shows)that the rank of skew symmetric bilinear form
is necessarily bven. This is also an immediate consequence of the-

Well-knowﬁ,f;ﬁeomm of determinants that a skew symmetric deter-
minant of 6dd order vanishes identically. '

The“eomjunctive reduction of a complex skew Hermitian l_ll&tl‘ixa
28 distinct from a gkewy symmetric one, follows the same lines as
,lﬁh\én‘above, diverging only at stage (20), where submatrices of type

” % 5]
—1 48
are obtained, ¢ apg B being real. The mature of the rational |
canonical bilinear fopry 1. easily inferred. If irrationalities are
permitted, we may further reduce the submatrix conjunctively by
[«|~* row,, ||~ col,, | B1~% row,, |B]~* col,,
o £ ¢ ||~ row,,  col, F 4 |af|~* col,,
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:'_(cf (9), p. 85), if a == 0, B = 0, thus obtaining a canonical form whlch
s purely diagoral but also purely imaginary. This final result follows
rationally if one of a 8 is zero.

_7. Definite acd Indefinite Forms, Sylvester’s Law of Inertia.

It was first discovered by Sylvester, and independently a few years
later by Jacobi. that in real linear transformations of a real quad.ratlc
form not only the rank r but the index of posittveness p remain en-
sariant—a theorem picturesquely named by Sylvester the Law of

Anertia of quadratic forms. Ke

Theorem IIL—In whatever way o real guadmtw form s reduged
by real linear ticnsformations to a sum of positive and negative/squares,
the mumbers p of positive terms and v — P of ﬂegatwe terils " remain
the same, provided that the squares- are real and independen

Proof —Suppose that the form #’Ax of rank #.has been reduced
ws above to the two different eXpressions ..\’ :

R TR Al TN 'Fyf]_ @)
~and o S +5 2"-1-1 T

We shall prove that p = ¢. If posetble let p > g. Since the variables
Yy and z, are cerbain homogenefus linear functions of the with
coefficients in the real field, gt\follows that the expressions (22) are
equal for all valaes of the\\v‘ Now the #— p+ g homogeneous
equations

7 =10, 32::0,..\.‘-. =0 y,,+1=0 ves ?!n:-'o (23)

being fewer th@\tn in number, can be satisfied (Chapter 111, p. 29)
by solutions §)== X, ¢=1, 2, ..., n which are not all zero. Ii ¥,

~and Z_s flpnqte the correspondmg values of y; and z, we obtain by
equating\the expressions {22)
Y2d Y2 b .. b Y2 Zp2 o+ 2=

But each term on the lef is mecessarily positive or zero: lience
each must be zero, and in particular Yy, Y, .. , ¥, are zero. We

}EEWB therefore found a set of solutions X, not a,]l zero, for the n equa-
iong

y§=0, ?:=‘]_,2,..,,ﬂ- ) )
But this contradicts the condition that the y; are linearly in-
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dependent functions of the », Hence g eannot be less thar: p. Similarly
- p cannot be léss than ¢: so that p— q and the theoren is proved,
A similar proof holds for Hermitian or for generuiized forms,
2% &o., being replaced by %2,

The integer p is called the indez of the real quadratic or of the
Hermitian form; it is thus an integer invariant of the furms. Some-
times a’ different index, namely the difference betwecn 1z number
of positive and the number of hegative terms, p — (r —- F1.oor 2p o
is used instead; this invariant is called the signature.
~ When the canonical form of the quadratic has no nceative terms,
and i8 of full rank #, so that P =, the form, whethor qeadratic or
Hermitian, is said to be positive definite. When p= p\rCn, it is
often called posisive semi-defindte, but more strictlysmay be called
non-negative definite of rank r. When P =r=0,.th& form vanishes
identically and may be called zero definite ormadl. When p =0,
. >0, the canonical form hag negative termgyonly, and is called
_ negative definite, or non-positive definite of f@}c\r, a8 the casc may be. -

The distinction between positive definité and non-negative definite
of rank <2 is not a pedantic one; .it\Bas an important hearing on
questions of maxima and minimesdi* functions of many variables,
stability in small oscillations, ~tedundant variables in statistical
problems, and the like, N\

%

8. Determinanta] Theﬂl'\ﬁﬁs concerning Rank and Index.

In many appliggtibns of the theory of quadratic forms it is useful
bo possess critediaChy which we cap recognize whether a quadratic
(OI.Hermiﬁafn)\fbl"m 18 definite or not. Several such criteria can be
derived ]:%;'MHEg the sign of the principal minors of the sym-
metric (f Hermitian) deterrinant | 4.

.S?\ﬁl.f" of the theorems exemplify the properties of compound
mafitides mentioned in Chapter ITI, p. 98. By taking the mth com-

pound of the identity (12) above, we obtain without difficulty

N\

(EmY 4o e Bw, | Hm™| 40, . . (24)

Whﬁ]_-'e Bm), easily computed from B itself, is a diagonal matrix, with
leading elemen, “% . . &y, and is therefore in canonical form; which
shows'th_at the canoniea} transformation of a generalized quadratic
form is Teflected by 5 corresponding transformation of a class of

- compound quidratics, for m — 2,3, ..., n— 1 The last of these
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“ig well known a3 the adjoint form; its matrix, apart from a penﬁu-' .
tation of rows ~nd eolumns, is the adjoint of 4. ' o

0y 0t
&) . oty Oty 1
For example if B= %a , then B@ = olp Oy " | and

3 '. .
oy Eu ¥y - Ny
B® = o , with respective orders 4, 6, 4 and ranks 3, 3, L N

: . R _
KO

Theorem 3V.—The principal minors of the determinant | A\| of &
generalived ¢idratic form which ds positive definite are gll, positvve.
Proof —1'v the initial step in Theorem I, the.ﬁr}t\ term in the
reduction of z':x was obtained as auélﬁ. Sigt;e the form &4z is
positive definitc the element @y, must be postive, Similarly, by
congruent interchange, every a; must be positive.
Next, siuce the diagonal elements of the canonical form B are
positive real numbers a,, those of fhe mth compound B, being
. the m-ary products of the a,, ate als@positive and real. By (24) abave,
it follows that the mth compound quadratic form, of matrix A",

| is positive definite, of full{ra'.fjk (;) Hence, as we have just shown,

the diagonal elements &£ are all positive. But these are simply
the principal minorg(of order m of the determinant | 4|. Hence the -
theorem is provedid) ' _

For negative definite forms we see similarly that the mth com-

- pounds B@(Bave entirely positive or entirely negative elements in .

- the diagohal according as m is even or odd, so that in this case the -
Pﬁn?iﬂil’ﬁin.ors of | 4| are positive if of even order, negative if of
odfis;‘?’fder- For non-negative definite forms it can be seen that
phwtipal minors may take the value zero as well as positive values..

A necessary and sufficient condition for & Hermitian or a Teal
symmetric matrix 4 to be positive definite is that the n leading
principal minors of 4, of orders 1, 2,8, . . . , 1, should all be positive.
For this implies that ay, ayey, . . . ,—the » corresponding leading
minors of the compound matrices B —are all positive. In the nega-
tive definite case the signs of the leading minors are alternately —, -+
and in the general case, changes of sign in the sequence furnish a means
of determining the signature.
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Various criteria may also be given for simplifying the work of
finding the rank of a matrix 4. .

Theorem V.—If in a general matriz A (not necessurily symmetric
or otherwise specialized; not even square) a certain miror of order r
i non-zero while all minors of order ¥ 4 1 which contain this particular
manor are zero, then the matriz A is of rank r.

- Proof.—The proof rests on the fundarmental identity of Syivester,
as given in Invariants, p. 45, II. For example, adopting the notatitn
for determinants there used, let (oBydelliay be a malrix of «grder
3 X 6, such that the determinant (@B)1s = 0, while all (af)== 0,

£=19,8, ¢ { Letw denote the column {0, 0, 1}; then . \
(wfe) (89 = (ybo) (aBe), 3. . (@)

identically, the dots indicating (loc. cit.) that <bho’ indices affested
receive determinantal permutation and sign, \ The three terms so
indicated on the right vanish since (aBE) =i

Hence the minor (y8¢) = 0, since (af)@e= (aPw) = 0. . (26}

Hence in general all minors of orddf's - 1 which have # rows in
comanon with the given minor vanidhy as also mush those which have
* columus in common with it N\

Next, consider the Sylyester identity involving products of six-
rowed determinants %)

(B3B8 (50e126) = (553456) (apeid6), . . ()

where the (8) =460, 1, 0, 0, 0), (4) = {0, 0, 0, 1, 0, 0}, and so on,
and n = 6. Sinee-by (25} all minors containing (af),; vanish, the right-
hand side £(27) vanishes. Hence from the left-hand side, {yBe)gys = 0. -
The same ‘treatment applies to a minor with rows or columns in
commoniwith those of the original non-zero minor. For instance,
Y58 © may include o or B.
\Fhe proof, summarized by this example, is general. Thus all
minors of orders ¢ - 1 are zero; and since one of order # is non-zero
the rank of 4 ig 4

The next theorem i more special, referring to a symmetric or
Hermitian matrix 4, _

) Tl'le.ol‘eml' YL—If in @ symmetric (or Hermitian) matriz & @ certain

. prineipal minor of grder p 45 non-zero, and all principal minors of orders

“r+landr g containang it are zero, then the matriz A is of rank T.

R )




Iy THEOREMS ON RANK OF A MATRIX

Proof —The winor in question may be moved to leading: position.
Lieh 1t be (oBy)iy. and let {afy8);zs, and (afyde)g; be two vanishing
“'minors. Then =ve have the determinantal identity

N (aByO)zss (aByelioma| -

0.5 ) 15945 (2 = ; . - {28) -
( B, hioaas ( ;8'}’)12.3 (a ‘8}13.)1235 (aﬁyE)ms._ {28) _

Sinee {2By8)ipm =0, we have (afye)ay.(afyB)as=0. But
by symmetry, or the Hermitian property, the two factors are either ,
identical or conjugate. Hence we have (afyd)ysy; = 0, 50 that any
minor of order » + 1, not necessarily principal, containing (a8
is zero. Hence, by Theorem V, the rank of 4 isr. "

L &

Note.—1f all dingonal elements a;; are zero, and all dlagonal minors
of the second czder | a,; ay;| are zero, the matrix 4 ig fhe mull matrix;’
for then dya;, = 0, ¢ 2= 4, and so a5 =0, - '

AN
Corollary.— By a permutation Q of the row and. columns of @ sym-

" melric or Hermition matric A of rank t, i 33 possible to ensure that the

leading minor of order T is non-zero, and. that no consecutive two of the
leading minors of orders 1,72, ... , T =P vanish together.

Ifall ¢y =9 and al} ]a,-si gf;]fé 0, then, as we have seen, the
matrix 4 is null. If, howeverybhe rank # is non-zero, let us suppose
that the longest sequenqe.df?f’eadjng minors obeying the above con-

. ditions breaks down in Sath = way that 4,=={a;a5 ... top | F+ 0,

Ay = 0,4,,=0,p g: 7. This would mean that all principal MINOrs
of orders p 4 1 ahddp - 2 containing 4, were necessarily zero, so
- that, by Theoren’zl’V, the rank would be p, contrary to hypothesis.
Hence p canroh be less than r; and of course it cannot exceed 7.
Hence P =) which proves the Corollary.

Théotem VIL—d symmeiric (or Hermition) matriz of non-zero
rahig Peontaing at least one non-zero principal minor of order r.
_ Proof—Since the rank is , there is at least one set of 7 linearly
dependent rows. By symmetry, or symmetry and conjugacy in the
Hermitian cage, the corresponding set of # columns iz linearly inde-
pefldent, HMence the minor corumon to these rows and columns, a
principal minor, must be non-zero.

f!‘his result is of course part of the Corollary of Theorem vI,
bt i fmportant, eniough to receive simple independent prooi. ’

The fact is also obvious from a consideration of compound matrices
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The rth compound of 4, namely 4, must be of rank I, for its can-
onical form B® has a single leading non-zero element o . a,, and
all other elements 0. Now 4% must have at least onc r ero element
in the diagonal; for if all its diagonal elements wero zvv there would
be at least one non-vanishing principal minor of order 2. This cannot
. be, since the rank is 1. Hence 4% has at loast one non-—rero diagonal
element, and this is a principal minor of order # in .

It is worth note that, if 4 is Hermitian of zank r, the zank of 4™ ig

(;) =r(r—1) (r—2)... (r—m—+1)mi {29)\

NN “
9. Congraent Reduction of a General Matriz to Canoniciy Forn:.

U
R

If in (10) above we discard the ~ sign and allow matrix 4
to be perfectly general in the field, we obtain apJddriity involving
Hy'AH, which does not wholly isolate the leading’ clercot @y, but
semi-isolates it. 'We can, however, proceed in thé same wey a3 before,
with semi-isolation of diagonal elements at dach stage, and thereby,

in at most # — 1 such steps, derive by ‘éﬁngruent transformation a
Jacobian form (transposed from the prévious one, p. 64)
HAH = o], Nd,=0, i<j). . . . (30)

If # is the rank of 4 we shajl'certain]y, as before, obfain 7 non-zero
elerents ay, ay,, . . . | @i 80 that the leading minor of ordor + in the
canonical form is a, g’\:‘u’. arr 3= 0. Since the rank of H' 41 is alse
7 1t follows that no element oty i1 {F, § 2> 0} can be non-zero. Henee
the congruent cangnical form of the matrix 4 is

AN
."\'" "an . N ar .
"'\~¢ .
\" G Oy
. ‘~,j\ @31 Cgp agz - ..
AN HAH = : , (31)

N

\ ) : E Crp

or H'AH — la,], where o, — 0, { i. <J
g

Thus the non-zero

: part of the canoniea]l matrix appears as a
truncated triangle, or 17

apeziutm. On introducing cogredient variables
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z and y we ohivtu a bilinear form y'A & which gives rise to 8 correlation

'=yds= % youye;=0 . . . . (32)
i, j=1
By cogracint transformations in ¥, namely ¢ = H§, y~= Hay,
the canonical form of I' is obtained as
o= ’f}’ H’Aﬂf = 2 Z maﬁ&, 1: o _‘}.. . = (33)

f==1 j=1

10. The Oritoyonalizing Process of Schmidt, N\
Consider # gencral matrix ¢ in the field F, and its tmnsppse\d
- - £ N\
conjugate C'. if we write 4 for the product ('C it follows thab. *
A= 0=00=00r=4, .36
g0 that 4 iz symmetric (or Hermitian) as before. If"n?o\;-; we reduce
4 to the dizgimal form B = [a;8,;], we have O )
B-. If'('CH = (H'C")CH = (CHY(0H) = D'D, . (35)
where D = (7. This type of matrix D is(0f Gonsiderable importance,

possessing ag it does the property 8%

| .‘.Q’
az ‘r:; .
D= \ : .. .. (36)

:..,t\ .
&

Ifr=n we h;r;'h}say that D is orthogonalized; if r << n we shall
say that D iy-ddii-orthogonalized, or orthagonalized of rank v. If we
write [ —_—.%,“}iz, ..., d,], where d; denotes the jth column of D,
then lm)’:—; tdy’, Eng, v, d.), where d; denotes the ith row of I}
and tk&yidentity (35) may be written in the form of orthogonal con-

difions

Jld)y= % dudy=0, i+J,

( ’ ”) het fei ki " (37)
(] d) = L dusthyy = s

-Bl‘icﬂy, E éfci dk.’i = ay Sﬁ‘ .

In the real field and also in the Hermitian case, each term dy d,,.,:
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is the square of the modulus of dy; and is therefore positive or zero.

Hence a, >0, ¢ <r, 80 that D is positive definite or acu-ncgative

definite. '
Ifr — nand a; = 1, then ’D=I,and D s orthogona! or unitary

aceording as D = D or D= D. If C is non-singular, then sl a; & 0,
for @;; = Z¢;;0;, a sum which cannot vanish unless earh element

¢;; of the éfs'h column of €' is zero. Hence the reduction (1) of Theorem I
is unnecessary in forming B: consequently H is a contired pmdug;
of matrices always with zeros below the principal diagonal, andMs
therefore triangular. 'This leads to an interesting thecroiu(liich,
though purely algebraic, was first given, it appears, in conng wion with
integral equations.

Schmidt’s Theorem.—In the comples field there exidtdra ?zoﬂ—amgular
matrin of riangular shape, K = [k;;], (k; = 0, 1 ]}\wfncﬁ frensforms
any given non-singular matriz of order n by\g;gst -multiplicaiion info
@ unAtEry matric.

Proof—From the given matrix ¢ con}ruct D= CH as above.
Since €' i3 non-singular its rank is » ‘and therefore o, &0, and D
is orthogonalized. Postmultiply both D and H by the non-singular
diagonal matrix Dy having for (%)th element 1/ | a; [}, This normalizes

the ith column of D and also™of D: further D'D'DD,=1. Tlence
DD, is unitary and the requited matrix K is the matrix fD),, which
is triangular. This praves the theorem.

Corollary,—Weitftin the real field such o transformation furns @
non-singular matkly by postmultiplication into an orthogonal matrie.

11. Observgaﬁ;u\n; on Schmidt’s Theorem.

Schritidt’s Theorem can be regarded as an operation on a set of
n vegtors. If o, y,..., z are the n vectors (of the second kind) con-
,sttt&tmg D, so that

a _ l‘% B A

Delny,....g=| % % 0 2,

and if VD = I, then we have

Br=fy=.. .=%2=1,
vy z3 ] (28)
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The vectors nre normalized and orthogonal {or unitary) in pairs.

Thus what Schmidt’s process does is to take any » linearly independent

" vectors @, B, . . . , v and strain them, as it were, into an orthogonal
or unitary set Ly o triangular matrix K, so that

(0 By K =[5, 02l . . (39)

Tt is an cxample of # cogredient transformations: the n points
¢, B, ..., are sirained into orthogonal positions, much as three
conjugate diamcters of a real quadric may be strained to principal
axes by real transformations. In the complex field Schmidt’s Theorem
generalizes to the complex variable the transformation from oblique
to rectangular axves. o

Tt may be observed that the number of orthogonal g;gﬁf]jtions
in (37) above Is n{n — 1), which is also the number of defrees of
freedom in the choice of a simplex of reference, such.as the triangle
at the beginning of this chapter. The presumptiof\is that there may
exist an orthogonal ot undtary matrix, which tr&gs@ﬁ:ﬂﬂ any generalized
quadratic form #’4% into canonical shape; .and’ this leads us to the
more specialized iransformations of the next Chapter,

®)
a g
"'0
N

EXAMPLES

1. 1 4 is a non-singular muteix with complex elements, then the Hermitian
matrix A'A is posilive de "cé{ v .

[For the Herrmitian fowm #4’Ax equals #y, a sum of squared moduli of
elements of the voctor gpe Az, Since A is non-singular, y cannot vanish excepb
in the excluded triviahisse x — 0. Hence the Hermitisn form is positive and not
7010 for evory nondaivial value of z, and so must be positive definite and of full
rank. Heneo thewlatrix 4’4 is positive definite.] )

& If 4 45°8 non-singnlar real matrix, the rcal symmetric matrix 4°4 is
Pbositive defipite.
7 0\’ $
1 32 A4 is a rectangular matrix of order m X m, with columns of complex
efek@ms, the Hermitian matrix 4’4 i positive definite if m > » and the eolumns
of 4 are linearly dependent, and non-negative definite if m < #.

. 4 The determinant of a positive definite Hermitian matriz A cannot exceed
% volue the continued product of the divgonal elements 8.
[Consider the first stage of the reduction at (11}, p. 85. The maitrix b5 has
- Don-negstive diagonal elements @y, and @y i8 positive. Hence the leading
clement; of 4, — Fagh is by <y, Since A ie positive definite oy = 0, and
?1”%> 0. Thus at the noxt stago we shall likewise have o < tigp and 80 ON.
0 all the transformations need are unimodnlar, Hence

4| = U TR A7 SRR oy |
(E 420} I I “1% %n s fufer i 8
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5. The modulus of the determinant of a general complex mutria A cownol exeeed
{TI&'a)4,
where & denoles a column of A, and the product ig taken over all colwmrs. (Hada-
mard’s theorem.}

[The singnlar case being trivial, we take A to be non-zingular. ‘Ihen, as in
Ex. 1 above, the Hermitian matrix 4’4 is positive definite, its diugnual vlements
being the real scalars &'a. The result now follows at onee from Fx. L]

8. The determinant of a positive definite Hermitian matrix d cienot exceed
@y | Ayy |, where | Ay, is the co-factor | ayasy . . . Gy | of ay.

[By conjunctive operations row, — k row,, col;— E col, we muy remove

all elements in the first row and column excopt g, @y, and ¢y - 4.y, witheud

affecting the positive definitc character of 4,,, or altering the walue ;u{]\&u |

Expanding } 4| in terms of its first row and column, we have e\
[4]|=aen|4dn]|— Gt | Ap, 12 4‘.'}‘ ]

whete | 4,5 15| denotes the co-factor of &,y This co-faotrif'is none-negative,
for tho reason given above, as also is its coefficient dygmys The resuit now
foHows, and could be used to establish the theorem of\Bxw4.]

%. The determinant of a positive definite Hermitd@ Jmatrix < eanmot exeeed
the produch of two complementary principal minorsd,

[Take the mincrs of orders m and » — m, afd dphsider the argument of Ex. 6
in relation to the positive definite Hermitian{compound matrix A™.]

8. The determinant of a positive defitite Hermitian matrix cannot cgeeed
the continued product of any completesset’ of non-overlapping principsl minors.

9. Enunciate the resalts of the ,préeéding examples for the case of & positive
definife rcal symmetric matrix,

10. U @ denote a column of & general matrix 4, and « denote the corresponding
row of the adjugate of 4y thén &'a . wi’ > j4i| 4]
[Let M denote theymatriz of two columns [g, '], The matrix

.\fﬁﬂ: [ﬁ’a E,’ﬁ,’] — [d’a, ;J.|
o Lue  ud’ | 4] w#

is thcn‘a. {xi':\aéagative definite matrix of the second order, and so
N\ Ea.uw =|A| | 4]}

2 &

N ALY cach of the elements of a complex matrix 4 is of unit modulus, the
\’niqdulus of the determinant of 4 cannot excced n#'=,

'[Apply Hadamard’s theorem, Ex, §.]

12 M 4= 4" is a skew Hermitian matrix, then B = id is an Hermitian
matrix.,

_ 12. Historical Note—The transformation of a quadratic form
wto 8 sum of squares dates back to Lagrange (1759); Buvres, I, 3-20.
It was also carried out by Gauss (1823), Werke, IV, 27-54; later by
Jacobi, Brioschi, Kronecker, and many others. The concept of rank
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" was explicitly discussed by Sylvester, Phil. Mag, {4), 1 (185i), p- 121,
or Uoll. Prgers, 1, 221; he gave the law of inertia in the following
vear; Phil. ilog. (4), 4 (1852), p. 142, or Coll. Pagers, 1, 380. Jacobi
gave it in J. fiir Math., 53 (1857), 275. The determinantal criteria for
rank and definifeness are due to Hrobenins, J. fiir Math., 82 (1876),
241-B, Berl. Sitzunygsh. (1894}, p. 245. Schmidt’s Theorem is found in
Math. Arncicn, 63 (1907}, 442; see also Schur, Math. Zeits., 1 (1918),
205.

The chapters on the history of axisymmetric determinants in
Mwr's Hisiviy contain many results bearing on quadratic farms’
The c¢hapters on skew determinants are also relevant. O\

Concerning Iladamard’s theorem on the upper bound o1 “the
modnlug of a determinant, we may refer to Muir's Historys. 1900—20
Chapter T{z}, and in particular to the contributions of Flse]ler, Szdsz,
and Cipoila, The theorem is of date 1893, but Muir, gb-bhe suggestion
of Tord Ielvin, had ifivestigated it in 1885, addNater did so in
more detail in 1908. The geometrical meamﬂ,g\\of the theorem i
that a pasallelepiped of given length of edgegthas maximum volume
when those cdges are mutually pelpendchla;e



CHAPTER VIII

Cavonicar, Repucrioy BY UNITARY AND
ORTHOGONAL TRANSFORMATIONS

. As hags just been seen, the reduction of a quadratic or Hermitan
form to a sum of squares or of squared moduli is far from giique,
considerable scope heing left for the choice of the matrix/AMA the
transformation \

s
o

IE,AH = [0’.; 8.5_,'] = D. . "f. : . (1)
S\
It is natural o inquire whether amongst these codjunctive reductions
there exist any which are also collineatory; any ‘stich, by Chapter IV,

. would be unitary, or orthogonal, with ﬁ”ﬁ’ &I, Then too not only
the matrices 4 and D but also the famili€s, or characteristic matrices,
4— M, D— M, would be equivalen, for

H(A— N)H=HAH~NEPH=D— .. . ()

It is indeed the possessionuof: $he double advantage of congruent
and collineatory propertiegithat gives the orthogonal and nnitary
sub-groups their peculiaf hportance, It is this that underlics the
reduction of conics aﬁd\quadric surfaces to principal axes, and the
extensions in analyfi$to orthogonal fanctions.

R .

1. The Latenp@oht.s of Hermifian and Real Symmetric Matrices.
In plgh@ﬁtion for what is to follow we shall next consider the
nature afthe latent roots of Hermitian matrices. It is a well-known
featurein the reduction of conics and quadries to principal axes that
2. roots of the diseriminating quadratic or cubic [@;— A8y | =0 are
Creal. This is only a special case of a property possessed by generalized
symmetric matrices {a,;], where a;; =

Example:

A=[—;%}=[?:]+[*ﬁ%]=9+w'®

The Iatent roots X of the above matrix are given by A?2— 3A—4=0.

Thus A=4, —1. The corresponding latent points are given hy
160

s
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3w, 4 29y - Az, —2x; = Az,. They are therefore {24, 1} and
{1, 2}, or wsultiples of these, respectively. It i3 to be observed that
the Iatent poinis of Hermitian matrices are not necessarily real,

Theorem L.—The latent roots of an Hermitian matriz are real,

Proof—Let A = A" be the matrix, and let A be a latent root
cotresponding to the latent point z. Then

Adz=dz, 270, . . . . . . {4,

and so Zdz=Az2. . . . . . . . [B)
A

- i . — =, =5 s

But {p. £1) the Hermitian forms z'4z and 2’z are real, and-¢% non-

. + N/~
zero: homie A s real, which proves the theorem. \

7%

Coroliary I.-—The latent roots of a real symmeiric mairse are real.

2\
Coraliary IT.—The latent roots of a real shew Symoneiric matrix are
either zero or clse pure imaginaries, conjugale tn poars. If the matriz
15 of oddd urdar, one at least of the latent roots 1(@0. S '

The firsi corollary is obtained (cf./p.¥84) by putting S=0 in
Theorem I: the second by putting @4=0, for then the latent roots
of the miafirix 49 are real, so that\we have for example 8z = Az,
Hence Sz= —4)z and the roots: af'8 are pure imaginary.

P4\

XS \ EXAMPLES

1, Prove that if theﬁ\;tent roots of a real symmetric matrix are distinct,
they are in gencral sefadated by the » — 1 Istent roots of each disgonal sub-
matrix of order n o0

[Consider the\:ges;l symmetric matrix and its adjoint matrix
Y a b g _ A H @
,s\" g={n b f|, adjgs=|H B F |,
\ g f ¢ g F 0]
7N\ .
whel;f}..A = be — f2, &o. The latent Toot8 Y1, Ye of ' are given by
Cr= (g — ) (b— A) — B2 = 0.

*
3

By putting A= —w, ¢ {or b), 4o we infer that both a and & Ke befween
71a*nd_Y2Whenk=f-0. Thus vy < & < a3 Y1 < B< Yo .

Again, by Jucobi’s theorem on adjugate determinants (Tnearianis, p. N
B0 — Pt {&¢ — M)A, where Ay denotes | Q@ — M| In general we have
Fr 2 0; hence at Yi Ye the value of (@ — 2)As i negative. By putting
A= — e, Y1» Yer &+ % we find that the signs of A, arc 5, —, 4, —. Henge
M <Y< Ry < vy < Ay where the ; are the latent Toots of @ If we apply
;T agobtl_'s theorem for diagonal submatrices of order n — 1, the proof follows by
nduction, i
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If each non-diagonal minor (such as H,} iz non-zero at a In
the general theorem is true. Bub, if Hy = 0, then Ay = 0. Sian luncously, a
latent root of § coincides with one of H. The reader should slso cousider the
cases (i) when @ is & diagenal matrix, and (i) when @ has repeated nteut roots,]

- . investigate the corresponding theorem for Hermitian matrice:

14 oot of G,

3. A continuant matrix will be defined as one which has zero +li:uents except
in fls diagonal, ity first superdiagonal, and its first subdiagonad; #; ;.. =0,
r > 1. Prove that if ¢; ;41 and g;.1 ; are real and of the same « i
the latent roots of a continuant matrmx are real.

[A collineatory transformation {H, H1} can be found involving 4 v} Jinsbial
matris H == [%,8,;), whioh reduces thc continuant to an axisymi mabux.]

4. The Hermite, Legendre, Tchehychef and other orthogona! p¢limomials
of analysis can be expressed as characteristic determinants of cc

the above type by sclving from their recurrence relations. Tepdy i%e roots of
these polynomials are all real. RS
x 1 .,
. I B 2‘.\.
i{For example the fourth Hermite polynomial is W g | =< Gz 4 3,
k7
. —1 . . : ‘S 3 1 . - )
—1 =2 (NY] 1 . V2 -
and | - . —1 . _g|canbe transfogl’l}“e&to Vo v Por [48,),
.. =1 . oON .. ove L

where by = —1/V6, by = 1/v6, hi —1/v3, b, — 1]
5. Transform to axisymme{ﬁc type the continuant matrix corresprnding to
¢\ R R
§
i
6, Ifina eb};t“muant matrix a; ;= 0 and ; ;41 and @;y1, ; ave of opposile

sign, the lat€nit Toots are pure imaginary if the matrix is of even order, together
with One/Zex0 oot if the matrix is of odd order.

g |+
i

o i\ 3
the fourth Legendre polynomisl, namely

C-111-4 *

\<&

T,

2. \‘;‘he Coneept of Rotfation Generalized,

A% B_efOIe we deal with the orthogonal or unitary transformation of
matrices we must consider such transformations for column vectors.
Here the inequality

Zz>0, . . . . . . . . {6

al?hougl_l its meaning i simply that the nomm 7'z of the latent poind
Z 18 positive, proves indispensable to further progress. An cxample
may serve to show how it may fail to hold in the case of a complex
Symmelric matrix possessing a latent point p of norm p'p.
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Consider the complex symmetric matrix 4 = 4" = l: f. %] which

has latent zocis 1, 1. -If p is a corresponding latent point, we have
2p, -+ 7p, == p,, i = Ps. Hence p= {1, ¢} to a constant factor,
and p'p = 0; so that the inequality in question does not hold. The
vector p iz in fact isofropic and cannot be normalized; and this, as
we shall sco, renders it useless for our purpose. We therefore confine
the discussion to the Hermitian and the real symmetrie cases,

It is o \,ommonplace of kinematics that by a rotation about'a
suitable sxis through an origin O a line OP may be brought, dhio
comcidence with a line 0§ of equal length Algebraically this ceneerns -
two vectcr: p, g with equal norms p'p and ¢'g; and it means that an
orthogona! mairix R exists such that Rp=¢. We shaIL éxtend this
to the ecaze of # dimensions and an Hermifian matrix, w.\

Lemmz L—From an arbitrary nom-zero colummN\bector of complex
elements = wclviz may be constructed which skaim the same time be
rational @ the elements, Hermitian, um?twy, amdl, involutory.

Proof—iTrom ¢, the chosen veetor, onstruct § = 2'e, L=127%"
As was feund in Chapter I, p. 4, 6 8 scalar, but Z is a square
matrix of ovder ». Since z =k 0, 89 48 'the norm of z and is pualtlve
on the other hand, Z is Hermlman Thus

9=zz=zz:}t0, Z—27=(8)=24. . . (7

Also 7=y 35— 207 — 027 =02,
5o that @roz=7z—9z=0. . . ... @

It is noted in Ra&mg that the R.C.F. of Z is a quadratic, so that each
of the lat‘aQt 'roots of Z is either zero, cceurring » — 1 times, or 8.
Again, by ’(8

NS 2 - 2 '
~ < J AR 27T _—_'I, 9>0 P i)
\‘;" (SZ I)(BZ ) - ®
A matrix @ = g Z — I has thus been rationally constructed which has
the properties
0=¢, @e=1I1 =1, ... (10
and which is therefore Hermitian, unitary, and involutory.

(Note~1If @ transforms a point = to £, so that Qo= £, then
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Q¢ = Q% =2 Thus in involutory transformations object and image
points are interchangeable.)

The Iatent points of the above unitary matrix ¢ are z and multiples
of 2. For Qz=281Zz—2=2z2—2z=1=2 llence 2 is a latent
point.

It may make for clearness to interpret the above work in
terms of rectangular Cartesian co-ordinates, regarding the vector
az=1{az, az, ..., @Z,} a8 & line of points through the crigin
in space of % dimensions. Evidently this line, Oz say, is nointwige
latent: the transformation @ leaves each point unchangeid, ,Adwve
take ancther point & and transform it to & by @z = £, w¢ find at

once that CtH—étaz . . . {(’e’f’«., (11)

This shows that the middle point of the line ]ommﬁ’\* to @ is latent
for all positions of z. We infer that if #» = 3yhe travsformation
represents a rotation through two right angleg’ ‘ibrout an axi; through
O and the point z: and that, for » > 3 aud for the conplex case,
the algebra genetalizes this concept of(rotation through two right
angles. We leave it to the reader to canmder the real and tha complex
cages when = 2, with the remark, that when » =1 thc complex
case is a particular instance ofwthe unitary transformation Q= §¢,
Q=¢" where a=7. Itis afundamental fact that the norm of a
veetor is invariant under umtary transformoation; thus the distances
from the orlgln of the¢ leﬁs x and ¢ above are equal.

Lemma IL—Adny{two non-sero vectors of order n having equal norms
may be bmnsfmmsd\mto each other by unitary transformotions.

Proof. —L&’&P and g be the vectors. Using the converse of Lemma I,
we take z§t0 be any point except O on the line through the point
P+ ¢.«Then we have, supposing the vectors normalized,

S)
} t=p+q O=F I+ P+ =2+4+p+7p
where ﬁfngfg:]_’ ﬁtg:ﬁ, §!P=P .. (12)
Then, if as before Z = 22’, the matrices ’

_ 1+p 7 L4+ p
are unitary, since

BR= (50 (fp—0)= Ao At G sl
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Also 1 p= (;»'ﬁ’—}—g?)p. Hence
Lp=@E+9F+@p=(p+q 1+,
Z —
1+p
ie. Rp=yg. Similarly Be=9p. . . . . .. .. W

or

0P=%

Two womjugate unitary matrices B and R have thus been con-
structed which rationally transform vectors of equal norms, or umitl
vectors, p 10 ¢ and g to p respectively. A case of failure arises if 1 A4
vanishes, Ihis is obviated by making the transformation R\fitst
from p to —g (which is possible since 1 - p and 1 — p canndt’ both
be zero), followed by a transformation from —¢ to ¢ by Means of
the negative matrix —I, which is unitary. This proves he Lemma.

1

Corollary.—A wnitary matriz R exists which Wdatsforms a given
veckor of norm Ga info {a, 0,0, ..., 0L N

Theorer J1.—A square matriz A of order n may be reduced fo the
canomical form of Jacobi, T' = [yl 1<C j, @p @ transformation RAR-L,
where R ds a unitary matric in the field vfithe elemenis and of the latent
roots of A, ™

Proof. This is almost identital with the proof of the Jacobian
reduction in the collineatoq&base, p- 65. By the Corollary sbove,
& unifary matrix R, exi{ts’whjch transforms any given non-zero

vector g into ¢ = {a, Q, ®,". . ., 0} Let p be a pole of 4, so that
Ap = Ap. Then, ks before, R AR-' has for its first column
th, 0, 0, . . ., OpNThe rest of the proof follows exactly as in the

former cago, By?$he group property of unitary matrices the various
transformati ';'\'by B, may be combined into a single unitary trans-
fDl‘ma,tiOI_} ','R’,\a,nd we have .

~O [ A Yiae ey
\ § )ls « o Yan ]
I'=— RA B—= - . s Yia = 0, '£>j-; (15)
. A |

whero the diagonal elements are the latent roots of 4 arranged in any
Pregeribed orde,
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Theorem IIL—If the mairiz A s Hermitian, o wniliry mare R
exists which transforms A info a diagonal canonical form of reul elements

A, namely D = [A:ds]-

Proof—Since a unitary transformation preserves the 1i ermitian
property, the matrix which corresponds to I' in the proscid case must
be Hermitian, with %5 = y;. Hence it must have zcros above the
diagonal as well as below. Also its diagonal elements cau wily be the
latent roots in some order. Hence the theorem is true.

This reduction gives an alternative demonstration of 4
the latent roots of Hermitian and real symmefric mat:
for the canonical form is also Hermitian or real syrnm:ivi€}yso that
the Iatent roots in the diagonal are equal to their cow eates and
therefore real. The imaginary nature of the Jatenteduts
matrices may be similarly proved. N

Tt has thus been proved that by a unitagy\dransiomation we
may reduce an Hermitian form #'4 % to th'e,its*@ﬁonjca.l shrpn

FAz= érD§= )\15_151 + )\sf_zgz—]} .. _]_ )‘rél-::-“fﬂ (16)
where Rz — ¢, RR=1I, and RARL=D.

N
5 aré yeal;

ol

The reduction iz no longer }’;Iééessarily rational, but lies in the
field of all complex numbers in*the Hermitian and unitazy case, and
in the field of all real numibers in the real symmectric and orthogonal

L)

3. The Canonical Beduction of Pairs of Forms or Matrices.

The above :Iie?mlts can be formulated in another way, Just asa
robation leaQr& certain distances invariant, so an orthogonal trans-
formatioQ\'leiwes #'w invariant and a unitary transformation leaves
#'w ipyariant. But &'z and &z are quadratic forms oIy and &1z
j\*i;ﬂi.imit maitrix I, and we have also R'IR == I. It is natural fo express
’ Xtthé by saying that the matrix I is latent in the unitary transformation

B and more generally if PAQ = A we shall say that the matrix 4
i8 latent in the transformation (P, @). Conversely, a conjunetive OF
congruent transformation which leaves the unit matrix latent can
only be unitary or orthogonal, as is readily verified. (Cf. Chapter v,
. 39; or Invariants, p. 152.) Now let there be a pair of Hermitian fornd

f=FA42, ¢=iBs, A'=4, B=5B, . . 17

such that 4 is of rank 7 and B is positive definite. By a rational trans
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formation & — P&, &= P¢ we can reduce 4 to the form £1B: 8¢
as above, where £, is real and positive. Simuitaneonsly 4 becomes
P AP, By u1eal diagonal transformation the % real non-zero elements
By can become units, so that the matrix B is now transformed to I,
the unit wmairix. At the same time let P'AP become ¢'4Q. Bya
nnitary transformation we ean rednce @' A¢ to diagonal form [a,8,,).
Combining the three transformations, which are all conjunctive, we
see that lheve exists a conjunctive transformstion H which simul-
- tancously reduces 4 and B to diagonal forms

Moy | K\,
o C
FAH— " , EBH=1I 1 (13
a, O
. xi\\:

- Les 4

ATl of the v corfficionts a, are real and non-;mﬁ;‘

Thus, in the real field, two real guadragio-forms, one of which has
rank r and the other of which is posipivé definite, can be reduced
simultanecuslv to the sums of squa;es; . :

a¥i® + ey - e g2, } e (I
y12 :‘]’-':3222 + - ‘J‘ ?f-n2'
The discovez’}? of the tranh(é)rfaation H containg the solution of the
problem of principal axés)for conics and quadrics, in non-Euclidean
geometry as well as Bddlidean,
The following spkinples illustrate a number of interesting and
more or Jesg im{a:téd unitary and orthogonal properties.

N ' EXAMILES
L BK‘**@\”tha-t if ¢} s a real symmetric matrix and & is o real slew symmetric
Watrif of) the same order, then the matmix X = (J+ 8+ i) (I ~ & — @)
B unitary. (Cf, Tnvariants, p. 156.) [Note that tho given factors of X are per-
mutable, ]
&I g [? :’:’ 8= |: ' 8], construct X. Construct also the- corre-
o —-g .

Sponding Unitary matrix for the third ordes.
8. The latent 100ty of u unitary matrix are all of unit modulus.
[Let & be o unitary matriz, & & latent root, z the Iatent point corresponding,

;[I‘hen Re=22, ¥B = 3%, and so 7T Bz = #lz=Z2-= \3¥% Since 240,
AR =1,
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4, Prove that if &, b, ¢ are complex scalars, then the matriy (Hermitian or
gymmetric)
[ da — b — éc b e
GadbhLd Getbbtéc Gat bt i
e bb — & — da be
Gt ibtde dutbbdde da-b Bt i
7] ch cc — ff!) — au
LGt bbt+de datBbide dat Bbor v N
is unitary, or orthogonal. [Use Lemma L. A

" 5. A real skew symmetrie matrix § may be transformed by a mgi‘l.e'?-ry\trans-

formation into a diagonal form with pure imaginary clements. \.\

[Put @ = 0 in the Hormitian case and teduce 48 to [a;8;], ydigre o is real]

6. Tho roots of the secular equation | 4 — AB| = | z; #ih, T = 0 are real
if A= A4, = B, and B i3 positive definite. The elemeht?s,ry divisora of the
* matrix 4 — AB ave linear. 4

[Take s non-zero latent point x 4 dy such that (A — A&7} (x4 i) = 0.
Proceed as in Theorem I. Use (18).] D

7. T hoth 4 and B above are positive défifiife, the roots of | 4 — AB|[ =0
have one sign. O\

z & B
8. Prove that l ma, : >0, |—ad o |, = ,< 0, if &>, =,< O, and
- abe x

80 on, whera the elements of the miktrices arc all real.

9. Throngh the curve of Intersection of an ellipsoid = -=0 and anothber
quadrie surface £ =0 thred real paraboloids ean be drawn. {Hiltown.)

10. An ellipsoid an%\k concentric quadric have in common a real trio of
conjugate diameters{ \(Hilton.}
11, A nitaty ‘foatrix A can be transformed by another wnitary matrix B
into diagonal forp.

[Since A4 = I the rank of 4 is #, and so none of the latent roots is zero.
If z is a\]{mﬂt point of 4, then Az = &z, 2+ 0, A= 0. Use a mufrix R, such
that R {w, 0, 0, ..., 0} and proceed as in Theorems IT and LIL]

12 Uso the result, of Fx. 11 to prove that the latent roots of a unitary matris
Jh8ve unit modulus.

9 "Tf 4 is reduced to [%;3;;), which is again unitary, then
(o8] ;8] = I'=[8,]. Hence d;o; = 1.]

13. Tu_cons{zmct a real orthogonal {or unitary) matrix whoso first m columns
are prescribed real orthegonal (or unitary) vectors,

[For example, take m — 2, #s = 'y = 1, 2y = 0, where z, y are the given
real column veotors, By the corollary of Lemma IT there exists a real orthogonal
matrix (ef. Inoariants, p. 317) such thab

Aw=1{1,0,0,...,0 =% A4/4, =1 .
Lot Ay = n. Then = #’A/Ay = 'y = 0. On substituting for £, we have
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=140 My s . . ., ), M= yy=1. Nexta real orthogenal submatrix 4,

existe guch that .
A2{-ﬁ23 »--.-‘fin}= {1;0,...,0}.

1.
. l_ :
Hence F 1 j Ap== 4 i an orthogonal matrix such that Az, ¢ = [ . .

It follows that A—1 {which i orthogonal and therefore non-singular} has, for its
fizst two coluwms, x and ¥ This is the required matrix; and the mode of its
formation wpplies for any number of columms, and also for unitary vectors,)

14. A real crthogonal matrix 4 ean he reduced by a real orthogonal mathix’
P to a diagonal of submatrices, W

4, O
4, (~.}‘:
PApP1— '
. ’ S
A, \
L AN
whers cach A, i either 1, or —1, or [ o8 ¢ B e s @,
—sing o9

[By Ezamples 3, or 12, the latent roots a-z;e',l;’l:ir —1, or et in pairs. Pro-
ceeding as in }x. 11, we isclate a diagonal elsment 41, for each latent root +1,
by means of 4 pegl orthogonal matrix By WWhe outstanding submatrix 4 has
Watent roats e-4 in pairs, and is therefore &l &ven ordor. Takea polez = z 1 iy,
such that S\

Az = eibgl A’d=1.
AN\
Hence, soparaiing real and i]ﬁgn&y parts,
Ax:xcosgjy i f;;, Ay = xsinp + yeosg,
{where » ang ¥ mre I‘ga;l.:n.alumn-vectors}. Write 22 =g, 2y=yr=og,
¥9=1, all of wh ol &réscalar. Then, by transposition, '
2 As A \ 3 - P . P
vA = albosg — y sing, y'A'=a'sing 4 ¢ cosg,
and by muitiglisation, ( wsing »’4’ , Az = 2’z = g),
',\f:" o= peos®p — 2gconpaing 4 sin%o,
Siﬂlﬂ{b{é {Q'A’ . Ax == y'a: = Gj,
7= peosgsing -+ ocoslp — T cosgeing.
B'Ilt ﬂln(p += 0 HGIIGE p=1T, o=1 or
¥r=ygy, wy=0
Hence o and y arg orthogonal vectors, and without loss of generality can be

22;?;;? zed, with o'z = ¥yy=1 Again the above relations for Az, Ay can be

Al =gl [ 527 208 ] = (s )0
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end the requisite @ matrix can now be semi-isolated by using T 13, Thus if
' 1

' . D O
Bz, y]= , where B is orthogonal, we find that B .1 1= [U ]

0

But BAB is orthogonal: hence

@ . o ¢ - . . SV TYT
O,D,:[ [ D] Lie ®® =140 =0, C'C~ D7 L,

Q.
Thus &= 0'C = O, and D'D = I, showing that © s isolated snd thatvthe
outstending D is orthogonal. Repetition of the process, npon 7, wiuyiletes the
proof-of the theorem. a\ S

The determinant of the crthogonal matrix is {(—1)%, where k%
of latent roots equal to —%. The matrix is a proper or émfu
matrix according as % is even or odd. '\'\ ?

If & is even, the isolated elements —1 may be gronged\in pairs, and rogarded
ag of type @ with ¢ = w. If k is odd, a single isolated XM is outstending. This
shows that an orthogonal transformation, in n-spagew/'of rectavgilay Carlesian
co-ordinates, with fixed origin, is built up of at moét &n rotations threns
angles o, supplemented (in the improper case) {3 ‘the reversal of oas i

the number
orthogonal

15, If ¢ 4- 4y = X is a latent Toot of & ggﬁeré,l matrix 4 of complex elements,
then p lies between the greatest and leagflatent root of the Hormitian matrix
P=} (4 4'), and v lies betwecen, the ‘greatest and Ieast latent root of the
Hermitian matrix @ = i (4 — A') (Bendixson, Hirsch, Bromwich.)

- [The latent roots of P and @are real. Let z 4= 0 be a pole of A with respect
to 3. Then d2==hz, ¥4’ =32" Hence #Pz= a4 + A’)z = u'=. Reduce
£ to real diagonal form [oci%’?].ﬁy & unitary transformation &; o is left unchanged.
I Bz = y, we have t}{en\y {851y = wif'y, that is,

p=(BEH [ (T £;%), say.

A\ ¥
This shows th%-‘?‘{é mnust lie hetween tho greatest and the least of these roal roobs o
Again ZQ'Z“——'- 3i¥ (A — A')2 = &'z, and a similar argument applies.]
18, 'ﬁ\ is a latent Toot of the complex matrix 4, then 2 les between the

greateithand the least latent roots of the non-negative definite Hermitian matrix
,4’;&“.\ {E. T. Browrne.)
\n [ Az= 2, then #A’Az=— 32%2 Transform A’4, which is Hermitisn,
¥ @ unitary transformation to a real non-negative diagonal {p;3,]. If z becomes
¥ we have Spg.;, = NSy, whence the result follows as in the previous example.
That A4 is non-negative definite follows from Ex, 3, p. 97.] .
. 17. By taking the mth compound identity of that used in Ex. 16, find the
co_rreapondmg mequalities_ delimiting the m-ary products of latent roots of 4
with respect to those of A4, m=2,3...,n

18. Each Intent root  of any principal minor of a unitery metrix is guch
ﬁ]la.tl )LI = L (Loewy, Bmum-_)
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[Partition the bicubity 4°4 = I, characterizing a unitary metrix 4, as follows:
[‘E.’mm ji’:ﬂfﬂ] [Am‘m Amp] — [Imm . ]’ p=n—m,
e A0 Aym  Agy R

whero suffixes reprisent orders of submatrices. The leading element of the
product on the lelt js .

z’mmAmm + H’ﬂm‘im = Ly

All the matrices {¢f. Bx. 16) in this identity are non-negative definite. Hence,

if 2 iy & latent point of A, then ) h
A A < ZL 2, 6. << 54

. _ 2N

But {of. Bx. 3) A A = A 02, - e\ T

pagkicd

Henee < 1] ¢ ".f}.

19. Tf 4 = 47", the latent r0ots of 4 arc of the form eia, S

(Take dz= 32, ud = hu, 24 0, u+ 0. Then ZAddz SM¥— Tni]
N

4. Historica]l Note.—The reality of the latend roots of a resl sym-
mettic matrix was first established by Canthy in 1829; (Huwvres,
IX (2), 172-5. Sylvester in 1853 cohsidered the general secular
equation; Coll. Works, I, 634, The txtension to the Hermitian case
Was noted by Iermite, O. R., 41 {1855), 181-3, or Buwres, I, 479-81.
Proofs arc formd in Clebsch, JNfiir Math., 57 (1860), 319, and 62
{1863), 328-9; also in Christefel, J. fir Math., 63 (1864), 255, where
the linear nature of the%ihwiriant factors is first proved.

The theorex that the Iutent roots of an orthogonal matrix have
it modulus is dué’fa Brioschi; J. de Math., 19 (1854), 253-6;
or Opere Mat., V1614

The unitaryrdduction of a general complex matrix to the form T
of Jacohi wasgiven by Schur, Math. dnn., 66 {1909), 488-510.

The thedrem of Ex. 15, on delimiting the latent roots of a matrix,
Was given In part by Bendixson in 1900; Ofversigt. Vetenskaps-Akad.
- Fork, (Stockholm), 1900, No. 9, 1009-1103, and Acta Math., 25 (1902),
359-65. Bendixson’s result, which concerned the real part of a latent
%00t of a real matrix, was extended by A. Hirsch to complex matrices;
iid,, 3677 0. DBromwich gave the result for real and imaginary parts
of latent roots in the general case; Report Brit. Assoc., 74 (1904),
40-1, ang Acte Math., 33 (1906), 297-304. The theorem of Ex. 16
on the Iatent roots of 4 and A'A is due to 1. T. Browne i Bull. Amer.
Math, Soc., 34 (1928), 363; sce also 36 (1930), 205-10. Further papers
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by E. T. Browne, Amer. Math. Monihly, 48 (1939), 252-65, and W. V.
Parker, Duke Math. Journal, 8 (19387), 4847, and 10 (1943}, 479-82,
may be consulted.

The progress of the theory of orthogonants, i.e. the flLt“'E’TTi.]TI“LT]tb
of orthogonal matrices, may be followed in Muir’s historical volumes,
completed by a memoir bringing the commentary up to 1920, Proc.

" Roy. Soc. Edin., 47 (1926), 252-82. Of special relevance is the account
of Cayley’s orthogonant, J. fiir Math., 32 (1846), 119-23. or Coll.
Works, 1, 332-6, and of the various other attempts to constrach a
general orthogonal matrix. Oy
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CHAPTER IX

Tor {awoxteal REpveTioN or PENCILS oF MaTRICES

N

The clsroc

w

RO N
oristic matrix, or rather family of matrices, A'\—-\}L
which plays =o importent a part in the collineatory reductiofi of a
matrix 4, is a pariicular case of a matriz pencil. If Wafhd‘Ve a set
of matrices 4, cach of which is equivalent in a certain{field F to one
of another sof of matrices B,, all of the same order;vthe relation of
equivalence being the same for all, namely, \)

PA-@"{:%__'_‘B& IP':FO’ [Q|:f=0a."5:\:h1,2,3=---, (1)

then any iiuear combination of the Ay \with scalar parameters A; is
cquivalent fo the same combinationyof the B;, so that

MBitdo Byt A0 B=PONA, + M Ayt . 1,400, (2)

The matrices XA, d, and INB, will be termed combinantal matrices
or combinants, eqlujvalensb\}n'?. A basis for such a combinant is a
- 5¢b of v matrices 4, lindarly independent in ¥, by which it is implied

. ‘MK . .
that no relation 2L ay A== 0 exists, where the «; are scalar numbers in

F, not all 26y 4 combinant resembles a A-matrix, but its elements
are linear gfid* homogencous in » variables, If »= 2 the combinant
Ad, -+ P‘}jz 18 called a matrix penetl, and is based on a pair of matrices
4y, Ay Beither of which is null or a scalar rultiple of the. other. The
sealay parametors A, jo are arhitrary; if we fix them in any particular
mstance the matrix so obtained is termed a member of tho peneil.
If =3 the system is called a nef. Our present concern is with equi-
valent pencils of matrices, and the associated pencils of bilinear and
. Quadratic forms, ' o -
In Chapter 11T the elements of $he matrices P and € were functions
of A: here this is no longer the case. The clements of P and ),

like thoge of the A4, and B,, are constants in F, and are therefore
(5 120) 113 4
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independent of the parameters A, p. If each 4, B, has #" rows and
n columns, P and @ are square matrices of respective orders " and n.

EXAMPLES

1, The pencil 1.4 4 p.T I8 equivalent to the penoil *B 4 T if, »nd only i,
P3 = I, that is, only in the collineatory group.

[Thus the theory of the collineafory transformation of a single :ustrix, the
{opic of Chapters V and VI, is contained in the theory of the equiaisni trans-
formation of this special typo of pencil ] ~

2. The pencils of bilinear forms w(hd, -+ wd)e and v(3 B, 5 1.[,) 1 are
equivalent #f v = u P, y = Qu. 2 AN

8. If the variables 4, » are contragredient, pencils of co]_Tj_uea-f:ii:’r‘:\% ave equi
valent, provided that P@ = I. Ao

4, Pencils of Hermitian and quadratic forms are equivaleﬁt:,“prcr:idcd that
Pr=4q. RS

1. Singular and Non-Singular Pencils, RN

‘Within the field of all complex nu.mbem':é;ery combinantal system
contains singular members. In particulaw’a pencil of squarc ratrices
A= X4,4 pd, of order n X n_cotitains singular memiers, for
which RN
A=Al =M, + pde|=0. . . . . B

Rach m-rowed minor 0fthls determinant A is evidently a binary
m-ie in A, p, while f{{idetermjnant A itself is a binary w-ic,

A= AR p) = poXn+ p XA b papn, - )

where, in pa{’tfigular, po=| 4], pp=]|4,]. If the determinant is
resolved into” homogeneous linear factors,

a :\ A= (G‘lh - Bl.lu‘) (C"'Z}l - 32.”) e ("--I'ﬂ)t - lsmu')’ . (5)
.»1;\119‘;& the singular members of the pencil are given by B;4;+ a:4s
NJhere are thus # or less really distinct singular members, one for cach
different value of the ratio A : g which causes A to vanish. All other
members are non-singular,

When the coefficients p; in (4) ahove do not all vanish we shal
call- the pencil A non-singular. The pencil is called singular when,
and only when, the deferminant A vanishes identically for all values
O.f A, p; 8o that each p,— 0, and every member of the pencil 18
smgu.lar. Such is the case for square matrices: other rectangular
matrices and combinantal systems are always singular,
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EXAMPLES
1. The pencil of conies Az? 4 (A4 ply? + 22 =0 iz non—singu.la:,'s.ince
' A . .
A= [ Ap = E O
. b

It possesses, howes
at— gt =),

‘er. three singular members 224 %<0, y2+ 22=0, and -
csponding to p=10, A=0, Afp=0.

2. The peusil of conies Aaz 4 pyz = 0 is singular, since
A
®

N
= 8. ) ¢\
NS ©

ﬁ:

Aop

N\

[Every memter of the pencil is singular: the peneil consists of & ﬁié&"atrajght
ling and & vazia®lc straight line through a fixed point.] : .\\

2. Equivalen! Canonical Reduction in the Non-Bingular Case. -

A non-gingular pencil of matrices can be 1\31@1\.1(':ed without diffi-
culty by equivalent transformations to rationghor irrational canonical
forms, whick depend on the corresponding eollineatory forms for a
single matriz. IF the pencil is A— Ady+ p A, then one or other,
or both, of the matrices 4, and A,\way be singular; i is always
possible, however, i the pencil it§l is non-singular, to change the
- basis to & pair of matrices Dy, B, neither of which is singular. For
if it be ascertained what values,of the ratio A : p yield singular members
of the pencil A, we may %@en choose (in"F) two other distinet ratios
A gy and A; © py differing from these, and may take as new basis

Dy '_-")51}&1 .'4‘ prds, D=4+ F‘zAz’} . . (6)
| D30, [Dy] 40, Xyt — dopry 0.
In terms ?ff%}}o“llew basis we shall have
R ™ Ady + pdy= pDy+ oDy,
wheby) A= Npt Moy p=pupt e, . . . (1)

or [A]___[}u )t{l[p}
w 1 e ¢
By taking P— 7, Q= D, which is possible, since | D,| = 0
We transform oD, + ¢D, to pD 4 ol, where D= D 1,"*. The
Watrx D can bo further reduced by collineatory transformations,
either $o the rational form B of Chapter V (p. 49}, or to the classical
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form C of Chapter VI (p. 61), whichever is desired. For example
if HDH = ({, we now have

H(P‘Dl + UDﬂ)DZHIH_]': PO + O-I, s ot e (8)

so that the pencil A has been reduced o a simple caronical form,
from which the canonical shape of any member can be asccrhained by
substituting the appropriate values of p, o.
It is of course to be observed that at this stage the rec'iu.-?..t-ion\is
applicable, by the insertion of variables # and x, to hilinesr fogms,
_but not to quadratic or Hermitian forms, since the matricd H' and
D, 1 II"* are not in general the transposed or associates of¢#yeh other.
EXAMPLES o\
1. The typieal isclated sobmatrix in the rational cfms}}iaal fora of a mon
*singutar pencil has an appearance such as, e.g., p = 4 $

N . 1

0x~)\.
Bnpw=ABtpi=\| - ~H~\“y. -
bk b wt b

2. An alternative form exists in leib’h the véles of ) and p are interchanged,
the coefficients B; being suitably modified® and two further forms may he obtained
by transposition. RN

8. The fypical submatrix ig“‘t.he classical form of a non-singular percil iy, e.g.

.zmx\ ak+p A X "]
Ow(l, u} = )\C: %}_I: - [: 23 + 3] o z{_ " ; i .
\J . . ah = P-J

AS
3. The Ingarjifanf Factors of a Matrix Pencil.

In ﬁs@ﬁy respects the pencil A= Ad, + pd, is related to the
charagberistic family 4 — AT of carlier chapters in much the same
W:ajgslé & binary form is related to a polynomial in a single vatiable;

<§m properties are analogous, and any additional complexity of state-

ent i largely on the surface. It may be surmised thercfore that

a pencil possesses binary invariant factors and elementary divisors

which, like those of the simpler family 4 — AZ, are unaltered under
equivalent transformations. This is actually the casze.

Faor example, by rendering the work on p. 16 homogeneous we have, lob us 8ay

L= [A 4 2030+ 2hp2 4 13, 332 - 832 + 9au? + du?l,
L@ =[x 4 p, 1,

where @ is a second-order square matrix whose elements are homogencous binary
forms (in this case, quadratics) in A, w.
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Here, in «ifzct, one has replaced the original A by A/p, and has
- cleared a comeon denominator—a power of u—ifrom all the terms.
It is apparcat that all essential properties of invariant factors (pp.
25-T) are priuevved: so that, by Smith’s method of reduction for
A-matrices (p. 23), a set of invariant factors :

BofAy, Ay/Bg L.

ean be conals
with eoeffic

cted, where Ag, Ay, A,, ... are binary forms in A, g,
nis in F, such that each A, contains its successor as{
factor, Eacl A. can, as before, also be determined as the H.CE,
of the minors of a certain order %, in the original array A: andthis
applies whether A is singular or not. This % takes the sucCessive
values p, p-- i, p— 2, ... where p is the rank of A. Fot the non-
singular case, when A has orders m X n, the determingnb’A = [ A |
does not vani:h identically in A, g, so that p— n, and A, = A itgelf.
ore adapt the formula (12), p. 23, o may write

PAQ = divg (By (X, ), Ey(h i)y ) Eih ) seen ),

Where it is Twportant again to notice that)in general P and @ are
not constant watiices but involve A, ;L.»Qﬁ the other hand, by restrict-
ing P and § w0 be constants we shallfénder the canonical form PAQ
more complicated than this diagena! matrix: but inasrauch as the
Testricted PAQ is equivalent $6CA its invariant factors will again be
identical with the products ,{Q”.}Z’Y)

e ) = B0, 1) Bah, ) - Bl o).

4. Invariance under,‘Change of Basis.

The invarlan@f:{cbors are not merely invariant under equivalent
fransformatiohgaf the pencil in the field: they are invariant (or rather
covariant) fow, the chaﬁge of basis induced by a non-singular linear
tra.nsfor:m;'atffon (7) from A, w to p, 6. This is due to the elementary -
fact, thet such o non-singular binary transformation can be carried
out i¥each partial quotient and remainder in the H.O.F. process for
0 binary polynomials ¢ and ¢ without affecting properties of
fh\rlsibﬂity, or the degree of any remainder, and without making any
mtermediate remainder vanish: the transformation can in fact be
Made at any stage whatever of the process without altering the final
*esult. Thus the invariant factors in terms of p and ¢ of the pencil A
Yeferred to a new basis are simply obtained by making the substitution
from 3, 1 to p, o in the invariant factors of the original pencil.
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In fact if 8= Ay, p = ky denote two minors whose .0 o Is required,
then 8, ¢ are homogeneous and of the same degree, lot us suy .1, in A, g, while
g i8 bomogeneous and of degree ¢. On transforming 2, 1 to g, o, & manifestly
& common factor of degree p in p, 6. Hence if g is the H.OW «f & und o, qud
functions of p, @, then g contains g. Bub conversely, on iniereia: sin ¢ the rdles
of &, p and p, o, the H.CF. g containg g’. Hence they are, 1o a constant
numerical factor, identical polynomials,

By resolving the invariant factors into homogeneons i.nnar factors,
n general by an irrational process, we arrive at the cueept of the
clementary divisors of a pencil, which, being simply the binary howmo-
geneous analogue of the elementary divisors as earlier detin i “hardly
call for further explanation. Pencils of matrices are o et in a
field ¥ if, and only if, they have the same invariant fsotu or, alter-

~

natively, the same elementary divisors. AN

EXAMPLES

1. Two pencils of hilinear forms Aud izt p.ic,{l}}:and rol?
eqaivalent in ¥ if, and only if, the matrix pengﬂg’l.cil + wd,
bave the same invariant factors. \/

- wvByy are
Wit 4+ uhy

Q"

2. Write out in full the canonical fol;ms’, “fational and classicnd. of & pencil
of hilinear forms, non-singular, elementaryand of the fourth order.

8. The invariant factors of the pau: of conics
WAz =gt §8 ‘and  a'By e ¥4 28,
for which the matrix pencil 153\

¢N\/ )
‘ﬁ+u3=|: At ]
QO ©“

are (%4 p), TN Two other conics of the system are 22+ 2y% L 2% and
©? — z® with ifwafiant factors 2p(p*— 0%, I, 1, where A= - o, u= p — &

b

o LN . . ‘
4, le’b&that the invariant factors of a certain pencil of bilinear quinary forms
are AR —k’b s M= Ry + p? find the canonical form of tho pencil,

[$h§3cormpondmg submatrices in the rational canonical form B(3, p) must
Q" [7\ n

X X .
A nd [ :|
“] # — M A—p

e . A

80 that the most general pencil In question is & P0I 4 1 B)Qy, where | P| =0,
| @] =£ 0, and where

.1, . ]
B=|1 . L

-
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The canonical f:=m of the pencil is therefore

vy b v Gam b Egm — &g — Eom;)
+ {En + e+ Egmy +- Eymy - Esms)]

nise members of the above pencil are given by values of ), p
iitghest invariant factor to vanish. :

5. The =iy
which canse

6. A rationel singular member of the pencil in guestion is
Eilm — wb o Galne — ma) + Eg(ns — ma) + Eu(na— 6) + Eslny + 2n).

V. The toruriani factors of @ pencil of Hermitian matrices are real.

[The TLC.E. of minom of order m in the determinant A of the pencit isla
homegeneous pidynomial in %, . By transposing the pencil we find tha,the
HCE. i e well the somplex conjugate of the above., Bub transposition

¢ value of each minor and therefore the value of t’h& H.C.F.
its own complex conjugate, must therefore he\real: thus
viurs are also real.] A 3

leaves nnal
The H.C.F.,
the invariant f

¢

R\
5. The Dependence of Vectors with Binary Linear’ Elements. Minipml
Indices. RN

 The forepoing method in § 2, p. 115, of red\ilb}ng pencils of matrices
to equivalend eanonical form, applies dnly’ to non-singular pencils.
Where the matzix pencil is square butsihgular, or else is rectangular,
peculiar features arise, necessitating!'a closer examination of the de-
‘pendence in F of the row and, golumn vectors which eomprise the
matrix. N :
We start with the fact {hat when a pencil (or combinant) A is
singular there cxist vectbrd u, © in F such that at least one and
Perhaps both of the qo&ﬂ;ions

‘,u@i:"z'{),uq:(); Ar=0, 0, . .. 9)

i satisfied. ﬁ»& has #’ rows and » columns, these conditions may
also be wa%en

R\ W n
N E U, TOW; — 0, 2 &y CO],‘ =0 . . . . (10)

'\
\./ =1 j=1
3}

If\ﬂ' >mn, then wA =0 is certainly satisfied (Ex. 4, p. 46): if
W <m, Az=10 is cortainly satisfied. If #' = n, then | A| =0, and
both are satisfied. These statements aro coextensive with the de-
finition of 4 singular pencil A on p. 114. We must now consider the
character of thege dependence-vectors » and . Consider, for example,
the following three binary vectors

P=[A4 A, g=[m A+pl r=[A+p A+ pk
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It may be verified that

(24 Ap)p + (e g2 — (A2 A+ p)r - 0 0y
and that no relation of dependence holds for p, ¢, r with «o-Hicients
of less than the sccond degree in A, p. The vectors 2, 4, ¢ wid he said
to possess dependence of the second order in A, p. Alternatively we may
weld the vectors into a rectangular matrix A, and write 5o relation
of dependence in the shape
Adep A ™\
[N Aty Aoy —X2 A — 2] [ p M-p] — [0, 5 )
' Adp A-p o)

Ny

or, let us say, wA = 0. In this example the coluzn,p%"f";ﬁ-‘ it matrix
A are independent. On the other hand—to take another cxample—
in the matrix U

A A}
A= , O
LL Iz \\

~ the columns have dependence of zerghorder, expressed by Az =0,
where z = {1, —1}, while the rows higve dependence of the it order,
since [n, —AJA = 0. Evidentlydependence of order m implies de-
pendence of every higher orde? m + k, since in the relations of
dependence A = 0 (or Az—0) we may multiply u (or &) thronghout
by any homogeneous scalar polynomial in A, z and obtain similar
relations. Also, sinc {nén—homogeneous identity in A, g implics that
each of its distineh,homogeneous parts i3 an identity, there is no loss
of generality in somfining the discussion to the homogencous identity
of any order. (Bt it is the minimal order of dependence that i im-
portant, f}){'fhé reagson that it possesses invariant properties.

Indeedvthe minimal order or indew (which we shall denote by m
in the'cdse of row-dependence expressed by 4A = 0, and by »' in
thelease of column dependence expressed by Az = 0) s dnvariont

\"ilgad@r two kinds of transformation,

(1) equivalent transformation of the matrix pencil A,

(i} homogeneous non-singular linear transformation of A, p to
£y 05 10 a word, change of hasis.

In proof of (i), consider an equivalent matrix PAQ, | P] =0,
| @] =+ 0, and suppose it possible that » PAQ — 0, where  is & vector
of minimal index, less than s, annulling PAQ. Since | ¢| =0, we
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must have v #5{j9)t = vPA == 0, where, since the eléments of P

are constants, e vector vP annulling A must be, like v, of lower
index than w:. But this contradicts the assumption that u is of
minimal degre.  Hence v cannot be of lower index than %: and by

the reflexive nuiure of equivalent transformations it follows equally
that ¥ cannot b of lower index than ». Thus the minimal index m
of % 18 invariant under equivalent transformations of A; and (i) is

established.

i}, we note that linear transformation of A, p to p, ¢ ,
wise the degree in the transformed vector %, though
the lowering of it, through the cancelling of sofns’
1 the transformed elements; in such a case, kogvaver,
retransformatice. from p, o to A, u, which is possible since..t‘he: first
transformation +was non-singular, would lead to a vectof of lower
degree than u, which is again contrary to hypothesis}\ﬁence the
minimal index o is invariant under change of basighand (i) is estab-
lished. By the same reasoning applied to the jzansposed pencil the
order m' is 1 > invariant under (i) and_ (i) “

It is to be abserved that, in ail the abeve, the matrix pencil A
I8 not necessurtily square, but may be rectingular, in which case P_
and @ are square but of different ordéps:

it might lead -
common factor i

6. The Canoricai Minimal Submattix, and the Vector of Apolarity.

By equivaient transformations we shall reduce a given minimal
telation A = 0 to u P PAY = 0, thereby bringing the vector u to
the form wP-3, and the pencil A to the form PAQ. A lemma can
0w be proved whighidntroduces a canonical vector

Wy = [, —;{@;ﬁ, A2 (—ymAm 0,...,0], m3>0, (12)

called ke 'v;;aé%"of apolarity and consisting of m -+ 1 non-zero terr:ps
arranged (it descending powers of y, followed by zeros. There will
also 060uz & canonical singular submatrix,
[ A

BoA

3 , .
Lm": '».‘ s“'"(ls)
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of m4-1 rows and m columns, containing twin diagr.ais each of
m equal elements A or p. In particular
A 7
i

A
w(ﬂ)=[1) 0,---)0}) Ll:[#}, L2= {J‘L }' ‘r"”" (14)
v M

Lemma I—There exist in F non-stngular constant incirives P and

Q which reduce a given minimal relation WA = 0 to the fori

L ™\
uP1PAQ = w,, [ no ]20, N 5
(m) ,u.R Al.'l ‘\‘\
where Ay 18 @ pencil with m 4 1 fewer rows and m Seoude columns
than A, and where R is a submatriz with constant elements* if m= 0
the Ly, and pR are non-existent (as in (19) below). fo,

Proof.—We build suitable matrices P and @, gténby step.  We first
note that at least one of the elements of « musfontain & term in g™,
otherwise we could divide through by A a dobtain a vector of lower
index annulling A. By an interchange pf?éements, that is to say, of
columns, of «, we bring this term into $he first element, dividing it if
need be so as to give p™ unity for cedfficient, Next, by applying to «
the operations col; — kcoly, (§ »1), we may use this ;™ o cast out
any other u™ from the remaining‘elements of w. These operations aTe
equivalent to a post-multiglieation by a certain matrix , which we
shall also call P,-1: angl:"v& can now write

Uy = uPy? .\\
=" o FA4 L Bt L A, ]
=pmmedX, ], ... L L. ()

where Aw dgnotes the vector deprived of its first element, 50 that
v itself@ha vector whose (" — 1) elements are homogeneous poly-
no:;qi\atlﬁ; in A and g, of order m — 1. If g, denotes the original co-
eﬁ;cient of 4™ in the 4th element, then evidently

[alsaa:--—,ae:—--]H=[1,0,...,0], P (17)

and we shall say that the process has concenérated the vector ¢ in
leading element.

We have thus reduced the original identity wA = 0 to the form
O0=uP P A=upAy, . . . . . (18)

volving a veotor Uy == %Py, and a pencil A, = P, A.
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In the top vow of the new pencil A; no term in g can oceur, for
there is no tervn in the identity (18) to cancel the pm+ which would
then arise. licnve the top row is either null or else consists of terms
m Aonly. Ii it iz null we have at onee [1, 0, ..., 0]A; = 0; and this
can only hapy=n il s = 0. This proves the initial stage of the Lemma,
vielding a redistion

m=0, uA=wygy| |=0 . .. (19
{0} A‘l]

If, however, 2> 0, the non-zero elements in the first row ‘of >

=

Ay may be cuncentrated in the leading eloment A by means of &
pest-multiplicy ;, just as in (17) above. Thus AN
AQ = [A, 0, ... :,O:I = A, . .(. N\ {20)
» mesmred the first row of the desiredMoem L, A seb of
premultiplicazicus Py, involving operations — oN\J

TOW; — a; TOWy, {2 >\1),

may now b~ invoked to concentratg\ ‘iﬁ. the Jeading element; A
all terms in A which ocowr in the.ﬁist column of A,, so that the
rest of the coinmn is now free fBﬁi;ﬁ’ A The reciprocal postmultipli-
cations P71, namcly Y

coly A col, (8> 1)

will then afiect the vegt}r\u.(l). But since no term in p™ exists except
at the first element, thi# reciprocal process leaves the character of the
vector m (16) unghtered. We can therefore write
(N
\;';\f’ 0= 'EE-(I)P2_1P2 Az - u(z) As: L R B (2]‘)
O\ . A
Where' ’\.j?:."'u)Pz_l = Uy = [ mod A, Av], Ag= I:.lw 1'1:"
HB"\E"F;C denotes the (n’ — 1) further elements of the first column,
below the concentrated A, and T' denotes a submatrix pencil of (»” — 1}
tows and {# -~ 1) columns. .

If =0, then on dividing the vector g, throughout by its first
(&ﬂ_d non-ze10) element we should have [I, 0, ..., 0]A; =0,
¥hich 38 impossible since m > 0. Hence v<=0. On forming the
Product g Ay In (21) it follows that

pI'=0, o0 . . . . + » (22)



124 REDUCTION OF PENCILS OF MATRICES [Chp.

Now v is a minimal vector of index m — 1 annullmg . Fur if not,
a minimal w of index p (< m — 1) must exist. Constrnci il vector
[pwo, —Aw], where we note that the first term is gealar. U'his non-
zero vector Is of index p 4- 1(<C m) and annuls A, as expoosion at
once shows: which is impossible. Hence ¢ is a true miniws!,
Assuming the truth of the Lemma (already demonsizuted when
m = 0) for the index p =m — 1, and for each pencil of +* or fewer
rows, we conclude the proof by induction. For assuming ihat sub-
matrices Py and @ exist which reduce the minimal reloricon 2T £\
to the form (15), with W), Ly replacing w,,,, L, let the coi:-i'{-‘:ﬂp@g&ing
matrices &

a1 . T T
P 1._.[' _P6-1:|, P—[- —-PO:I, Q_'I_—.‘..: _’_ {-.35.'__1]

-\
act upon the identity (21). Then \Y
0 = up P-1, PA,Q = rog kP T ey
Tl PRE =l - “’%Em Pro, ) |
where d = —P ¢ is the new form of,t}}é"s;et of coefficients of ¢ in the

first column, and where oP5 = whand u; is the leading component
of ). The first p -+ 1 10ws of. bHe pencil can now be writien

*'A m"' . . . . . .-
O
,LLS\Z\..)\_ |
WOy 94)
;:.\ . . .
\\ [ 1854y TR i

. N \ 5
while ﬁthg, later rows have assumed the desired form [uR, Agy] of (15).
- ?ﬁthout otherwise disturbing the pencil, we can remove each ;4

QXCEPY Oy, by the operation ’

w0l — 8y coly,  TOW,4- 8, TowW,,  (i>1) . (25)

which indnces the reciprocal col, — 8441 col,, (3 > 1) upon the minimal
vector, and evidently only changes its leading element, let us say, to
', but agair leaves the coneentrated 4™ unchanged, The identity (23},
80 far as it concerns the first column of the final matrix, now reads

[, —dom){A 18,0, ...,00 =0, . . (26)
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~ which is only sacirfied if 4, = pP+18,, since the leading term of Wy, 18
p?. Bubt p = -—1. Hence 8, =1, ' =g». The operation (25)
has in fact strip:iied 4, of all but its leading element, and (26) becomes
wetd a0, .. ., 0} = 0. At the same time the submatrix (24) be-
comes [L, '}, s»¢ relation (15) being thus secured. This completes

the proof of the {smma,.

Lemma IL.--if Ax = 0, the vector x being of minimal index m’,
then the pencil A~ con be reduced fo a Jorm in which the first m’ .10\
cobumns are L. and zeros, where 1 is the transposed of 1., A

O\

This follows by applying the argument of Lemmsa I to colhmis
instead of ro \*
The submuatris
typical of the

Previcus canon:

Ly, of (13), which we may pause to-gxamine, is
rionieal form of a singular pencil, T ‘differs from .
submatrices in being rectangnlar,in 41 X m, instead
w2r, though its rows possess dependence of minimal
5 are independent in A, p, asdn readily be verified:
they would he dependent were it not forsthe semi-isolated A in the
first row and 11 1 in the last row. D

The application of these Lemmascdg*the rational reduction of a"
singular peneil il now be considered.

N 3

7. The Rational Reduction of/a. Singular Pemcil. S
Theorem I.— 7' m;t?‘izvtk = [Aay; + pby] of a singular p M‘Z )
con be reduced fy rationdl, equivalent transformations to the camonieal

\ N _Lm1 -
¢\:: ; Lm,
\\‘ ‘. _
® :.\ }-ﬁﬁ_@ o= L = me! . 3 L] (27)
¢ ’\u v L ' :
o) i
X PR

where M s g square non-singular cove in vational canonical form
(B, (3, @) or possibly, with a change of basis, [B, (p, 0)]—_

. Pm"f ~—In the first place, row-dependence of zero index may be
Posed of, resulting in a certain number of null rows in the canonical
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form. TIn the same way column-dependence of zero index will lead
to a cerfain number of null columns. For convenience we sl suppose
this dealt with, and shall therefore take A to he the re uing rows
and columns. By Lemma I, if the rows have dependence of index
my, We may reduce A to the shape

where any row-dependence that may exist in p R is necessarily of zéfe
order, which has been disposed of for A, so that any {utblgn row-
dependence in these lower rows [pR, A,] must be sought for e:,\;::\ﬂhﬁ?vely
in the submatrix A;. Moreover, such dependence must bs.bi order
g 2> my, because of the minimal nature of ;. Henét™%= proceed
to reduce A exactly as we did A, obtaining at this s{&gc, s 07 Many
former occasions in eazlier chapters, O

L, 0
P2P1AQ1Q2: * Lm&;" 2
ANV Ay

where the asterisks denote submatzjiééé not in general null, involving
o but never A, If further row-dependence cxists in A, we proceed in
the same manner, and so ony\intil we either exhaust the rows, or
- arrive at a submatrix A, if“which the rows are independent,

The dependence of g} s i noxt considered. Sinece, as was
observed earlier, the c\el’m;hns of L,,, L, ... are independent among
themselves, depeqdehce of columns must be sought for, if at all, in
Ay This we ;‘educé in the same manner as A, but in transposed
faghion, obtaiuimg at last, when dependence of columns has been
exhausted, @ equivalent canonical form for A, namely

O : ;-
ad oot . ' ]
N T +
O Lm! '
4\ " i *
\‘3 Lms
.
« * ..... * ....... L!'** ........ * . (28]
o.-: ”31 u-U: > "
* # H ! :
L,
#* #* !
g
1{ ..................
[ = s X e i S
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where § 18 a possibly existent non-singular core which may be reduced,
through a chanye of basis if need be, to the rational canonical form
[B, (s, o)l |
Buch a step cxpresses each element of the L, (and the L) in
terms of p, o as 2 {7), p. 115.  But by successive row (or column)
transformations these submatrices can take the same form whether

p -
{G p } ar P07 :l, without altering their minimal
L a
o P
numbers. . .
Tor example, if 1:1:[ _ 'y 7\2] I:p] .',\'\"\
u 1 B ol’ O\
A " B, “\ }
find Pand @ such that Plg A |1Q = [ o p|. RS
o c \Y;

w\J/ :
It remains £ clogr away the redundant nq;si\:zé}o elements in th
submatrices in by asterisks. Theseddubmatrices are aligned
with {i)two L,’s, {ii)an L, andan I/, (u,l)Lm and S, {iv)two L',.s,
5} L and 8. OF these only cases (i);?(;i), (iif) need be considered,
the others being their transposed anael;ig{fes. We proceed by induction.

A o .
k2 i ALY LI
T O \Z! oAl
SR I EY
* LI N W R S
* * % Aop * ¥ b bpp b
{ii) (iii}

. In’(i)flﬁi a disgonal barrier be drawn just below the leading diagonal
Of_thé‘slfbmatrix of asterisks, which has m, - 1 rows and m, columns,
heing aligned, let ug say, with L,, above and L, to the right. - Since
¥ bypothesis My < my, the top row of asterisks lies entirely above,
and the bottom roy entirely below, the barrier.
Each non-zero (47th) asterisk represents a term oy If it is situated
b ®% the barrier, but not in the final column of asterisks, it may
° *emoved one step diagonally downwards to the right. Tf it lie in the
final colomp it may at once be deleted. This is done by utilizing
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the p of L, in its own jth column and the A of L,, i its own 4th
TOW.

For examplo: rowy — arow,, col, -+ xcoly moves a torm wyw from position
{5, 1} to {6, 2) without disburbing anvthmnf clse.  The process, Tow, — & row,
deletes ap at once from position (7, 3).

Similarly by utilizing the x of L,, in i#s own row, and the A of
Ly, in its own column, each non-zero asterisk term oy sitnated below
the barrier can be moved one step diagonally wpwards ic iha left | tlll
it passes off the figure after reaching the first column.

Working from left to right above, and from right o lefi Chelow,
the barrier, we manifestly delete every asterisk. “

In (i) the original rule, involving the w above, and th¥ A to the
right, removes cach element one step diagonally upumrr?\ i the right
until it is deleted. R

In (ii) the same rule applies, provided tha# Sabh clevaent of the
first columm is treated before those of the gechnd, and ~sch of the
second before those of the third, and so ont {The process differs from
(i1) in that, at each remove, the lowest rcrw receives, through the term
buge, an addition in the column entered, by the diagonally upiard moving
term. Clearance from left to Tight can'proceed as before.

Hence any asterisk below an Lm;c of the matrix (28) may be removed,
although the act may alter th‘e elements of a Jower asterisk, owing to
column operations, but \o case can a A term he added to an
asterisk. Evidently b .‘procecdmg systematically downwards for the
L columns, and S]m.ﬂ §y to the right for the L’ rows, every asterisk
may he removed,

Thus solely; by ratmnal equivalent operations, which can be com-
bined with gl éarlier operations on A so as to give an equivalent
matrix PAQ, the desired canonical form has been establiched. If
preferredthe non- singular core S could be put into the classical form
C’(A,\ ) instead of the rational form B(X, p).

'8 ) The Invariants of g Singular Pencil of Matrices.

Theorem I1.—The snvarianés of @ singular pencil A wunder r’qm’aafeﬂi
transformations are (i) the two sets of minimal numbers m and M (99-
chuding of course zero values, if amy, m—0, m’ — 0), and (i) the
invariant faciors of the singular core M. '

In proof of (i), consider the co-factors in the determinant A of
the upper right and lower left corner elements of a canonical sub-
matrix L,,; evidently they are ymA,, and AmA,, where A,, is a common
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residual minor of order » —m — 1. The H.C.F. of these is A, =0
that L, contributes nothing from itself bub unity to the highest
invariant factor of A. The same is true of the remaining I.’s and
I '8, and by considering the co-factors of the upper right and lower
left elements of two L’s at once, and so on, we see that the L,’s and
- the I/,.’s contribite nothing to any of the invariant factors. Thus
the invariant factors reside solely in the singular core §, and if no
§ exists they are anits alone. For example, in Ex. 2, p. 115, there
is a single m == 1, 2 single m' = 1, and no invariant factor. '
In regard to (i), we enunciate the following theorem: O\
{ N\
Theorem IIL--Two pencils A and A are equivalent o, and, 5%'\13! s
they possess the saime minimal numbers and the same mvariahl factors.

Progf —Let », be the smallest minimal number.»fi)rg _::"1, i, the

oorresponding smallest one for A. If #y— My, phen by partial -
reduction to canonical form we have ’:‘.\\‘

R
, L » AN ]*
A—I_‘{. My E =H y " K.
L Al] o A 1[ AT

The same argurrent can now be gpfﬂfed to the isolated matrices A,
and A,, in respect of the next mifimal pumbers thy = My, and so o,
unti] the wm’s are exhausted,, Hurther similar trestment applies to m"

~and the result in ?elatioyi@). the non-singular core is already known.
Thus finally we have s\

A TEES A=HLE,
- (N .

Wwhence /Kaﬂﬂ—lia KK =DPAQ, |P|=+0, |Q]+0.
Q

Henee th@p?nu}s Aand _/i are equivalent. -The econverse can be prove(]
SteP»by:Step in a similar manner.
3

9. Application to Singular Pencils of Bilinear Forms.

It is scarcely necessary to go into details, the matter- being one
of translation from one notation into another. The singular pepci
of matrices A — Ad,+ pA, being reducible to canonical form
‘F: AQ=L, the pencil of bilinear forms in independent variables,
¥Ax, is reducible to 7'L£ by substitutions y’ = n'P, 2=Q§. The
0 Tows and colurans in L represent redundant variables. I A

femaing singular when these are absorbed, the eanonical form of the
{® 420) 10
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penci! consists of a sum of minimal bilinear forms suck as, e.g., for
m=3,

) ¢
P Tgs M) fad A [f::l = A(’?lfl + 0 fz) + P'-("kgl + n385), (@9)
13

‘together with & sum of minimal forms like

f .
A 3 i
[%mﬂ p ] & | = Monaa - 158 + mlngy - n, £, 50)
A p : A\
. 5 ’\..’

. Y
{where m" = 2) and possibly a residual non-singular penail¥ one or
other of the usual canonical shapes. Evidently there dre 2m - 1
variables involved here in each such minimal form ofthe {irst kind,
and’ 2m’ 4+ 1 in cach of the second kind. Noife of the variables
&, m; can be present simultaneously in two pi'\plore submatrices.

7
W

EXAMPLES N x\

1. Singular pencils of matrices (and bilinesr forms) fall into thres catogories,
{i) those with both types m, m’ of minimal ¥imber, (ii} those with m but without
m’, and (iii) those with m’ but withous iy, If the pencil is goneralized quadratie
only case (i) can occur. N

2, If 'PAQE is the canonical fobmh of the peneil 4" Az, prove that the number
7 of variables E; is loss than thesimber of original variables x, by 3, the number

of zeros of the minimal wumber m. State and prove & similar result for 4, #,
m. (N

&
8. By using the Canon\ical form, show that § is also the number of distinct

livearly independent,. felitions, wA — 0, between the rows of A, where u is
constant. KLY :

10, Quadraﬁn{;a\ﬂﬁ Hermitian Pencils,

The problem of reducing pencils of gencralized quadratic forms
to ca:l}oigcal shape requires not merely the setting up of 2 convenient
Hermitlan or symmetric matrig pencil with the same minimal numbers

nd invariant factors as the proposed pencil, but also the assurance
that the canonical form can be obtained by a congruent or conjunctive
transformation, in order that variables, which are no longer in-
dependent, may be nserted in the matrix pencils. That an eguivalent
bransformation exists we know from the theory of bilinear pencils

ju_st expounded ; the existence of the degired eongruent transformation
will now be deduced.

Lemma IIT,—J [ two equivalent matrices X and Y are both respectively
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< symmetric or shew symmelric, there extsts o mairic H such that Y =
HXH, |H]=¢0

Proof —Let Y = P’XQ, | P| =0, |@|+0, where X = 1X,

Y==1¥ .
Then PYXG—~ V=4 Y =+ QXP=gXP. ., ., (31)
Hence (QPYVYX =XQPT,

of, et us say, SX—=X8 S=¢P1 |S§|+0
Tterating this last identity by squaring, cubing, and so on, we E&i\re\
(82X == K82 . .., (S X = X8 ..., T'X=XT\(32)

where T = f(S) is a polynomial in the matrix 8. If fwthel| 7| =0,
we have X = "X 7land so Y=PXQ= P'T’XT'IQ This may

be identified with 'YX H, as desired, provided ey H — TP = T- 1Q,
or 2= QP-1— 5 This condition is satlsﬁed ane 8§ is non-singular,
and 7' can be obtained as a po]ynomlal in>S by the interpolation
formula of Chapter VI, p. 78.

Thus the Lemma is established, thqugh in general only by resorting,
ab this last step, 6o irrationalities~ind the complex field. It applies
to pencils in which the basic matfives are of any of the types considered,
ag for example the peneil ing which the basis consists of a symmetric
and & skew matrix. Supposing therefore that a canonical matrix
pencil with the same tyPe of basis has been constructed—it matters
206 how—and that Gy has the prescribed minimal numbers and
Invariant factorb;then the Lemma ensures that the pencil of forms,
as distinet ﬁ% ‘Tedtrices, can also in all cases be reduced to canonieal
bype.

11. Wexel*st”rass $ Canonical Pencil of Quadratic Forms.

I“f\edch isolated diagonal submatrizx (A, u} of the clasﬂlcai
irational form for a matrix pencil,

a4+ pn A
1> ad -+ p A

- ) . (33

O'ﬂ()‘: ,u.)——"- . . ’
. A
L ad-i-
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be premultiplied by the p-rowed matriz J » 0f Chapter I, p, 11, we
derive

@A+ p
GA + 24 r}\‘l
Wo(d ) = S e
At !
aA--p A N
N\
This elockwise rotation through a right angle can be pcrfamped for
each submatrix, yielding the symmetric pencil O\

W) =100 1= 1,050 ) 1= [, (K0

which is thug a valid canonical shape for-a symmejnip niatrix pencil
with presoribed elementary divisors. Introduging, Variakles in ac-
cordance with Lemma, IIT, we derive the rrational canonival form fcfr
a pencil of non-singular quadraties first given by Weicrsizass, It is
not necessary to write the pencil of formg'\f)i1t in full: ite nature wiil
be inferred at once from the matrix IXNY,

The case of Hermitian, and indeed-of zeal quadratic, vencils re-
quires an additional condition, called*the signature test, analogous tlo
" the law of inertia of p. 89. IXfeaiind therefore the factor ad - u is
complex, the invariant factor-Which contains it, being real (Ex. 7, p.
119}, must possess GA -- wéalso, so that to each W(A, ) corresponds
a W(A, ), and the twadan be placed astride the diagonal to form
a double submatrix of\the required Hermitian form,

7 Awaw VTl e
But if o is"“'i\éal, a submatrix L W(), u) is placed upon the diagonal,
where @sigﬂ must be determined by the additiona) test, References
Yo proots of this are given on p. 142,

AN

a\"
) Y
4

). Bhow that

- 1 - . a)\-f'-p, 1

| . al+ p

I b4 g A
L. 1 :

. . . Bh 4+

. ar 1
-::[a'l—‘}_il A J
. E?\—f—-p "

[ ) R A

EXAMPLES
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The correapon ling quudric peneil A8, = w8, s given by
8 = Bz m, - a4 hagey 2B 8, = 203, 4 2,7,

fﬁlﬁ Segre characterivti ic[2, 2] if e & b, [(2,2)]iHa=0

g, If in the akove -
this classical matrix i}

o & ~= B, finl the analogous premaultiplier which renders
D1thig,

3. If two symmoirls; or skew symmetric matrices have the same invarian®
factors, the one can I'c irinsformed into the other by a unitary (or an orthozonal)
tranformation.

[If X an} ¥ are t% matrices, consider the characteriztic pencils 31X 4 wl,
¥ + pf, anl erapto: tomma I11] '

4. Skow how to ract a canonical form for & peneil of skew, or symmetrie)
matrices with presc: vlementary divisors. )

[Arrange submaty: -

W, — W, across the diagonal.] : ’\.\

4 B :
< D

12. Rational Cansoical Form for Hermitian and Quaﬁwﬁé “Pencils.

The Weierstragsinn form just mentioned is related o the classical
collineatory form ' of a matrix 4. We shall mext’show that the
rational form B wan be rationally transformed-ini6 symmetric shape
by premultiplyins by a non-singular matrizx B¥of simple form. For
. example, taking «n Hermitian pencil in_the rational shape B,(A, p),
we have, apart frowm the signature test, v

™

by By, by ._1" % u ]
by b —1 IS A p

RN N
—1 bup bypp byp Ad-byp

b 2B byA bA -—A]
L AB bab —At b k| e
P\ b A —A+bp —n
.‘ :3 "“h —p

AN
380 mr}:a&jly be verified in this and in the general case, with 2 slight
varatitn according as p is odd or even. Since the invariant factors
of an Hormitian pencil are real, the coefficients b, are real (Ex. T,
P.‘1‘19), and so this last matrix is real symmetric and therefore Her-
mitian, a3 we desire, Simplifying it further by a guccession of congruent
Operationg, row, , - b row,, col,;+ b, col,, TOWpop + by Tow,,
%0l,_y + &, col,,, and so on; then Tow, g+ by10W, 1, €0le g + byoolny,
ind %0 on, we derive rational and real symmetrical canonical .fomls
for Hermitian and quadratic pencils, which again differ slightly
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according as the order of a submatrix is odd or even, typical submatrives
being, e.g.,

A —byp =X - ’
L A —u ] A
[ bA — by &
by A — by -—PL; S
Dy(a, p) = —A=b #,\jﬁ- S
—A —p 0
L —A — .".\\“ o

W

By Lemma I1T, conjugate va,riablés;..’cé,n be inserted, a;u?ﬂ rational
canonical shape for pencils of quadeatic forms is thus cstallished,

“EXAMPLES

1. Verify that e'xpansiqn.b];: the determinant | D, (%, )| gives for the invaiant
factor the correct biua{j\_pul‘ynomial

By(h, p) = 2 + By 331y, — by 2P 2 - By AP PuE — L (= Py bi?.

[Expand the deferminant in terms of its first row and column. This gives
the recurrence felation | B, | — 2} Bpa| — (—w)P by — Byp).]

2. As helofe, in the corresponding canonical form for skew or skow Hermitian
matrix ﬁqcﬂs, the invariant factors oceur in pairs, and submatrices Dy, —Dk
lie agrgh{;\;he diagonal,

NN ’
NN
\13. Singular Hermitian anq Quadratic Pemeils,

I the matrix pencil A= Ad, 4+ pd,— A/ + pd, = & is
Hermitian and singular, the two sets of minimal numbers [m] and
{m'] are identical: for if A — 0 i8 & minimal relation, with mint-
mal number m, we have by transposition the associate relation
AW = AW =0, which yields a corresponding and identical m’.
Hence a canonical matrix pencil with prescribed minimal numbers
eal be constructed for this case, naely
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Lo,

IX]
L

nty
PAG— R K I
: . "

j'lf PR L L M

where each L, and 7/, is an isolated minimal submatrix, or possibly
-a Tectangle of zeros. wud I is a non-singular core, which can be cast ¢
info any desired shiy. Once again inserting variables by Lemma I,
we have a rational canonical shape for a singular pencil of quadeatit
forms, For Hermitiun lorms the signature test only affects M., O
The analogous Lr fur a pencil of skew or skew Hermitiag matrices

can also be ll’lfeI'I‘et_'i’ 1::111 le "‘.\.\

L,
\Y, L. {40)

.
M

P

\

14. Reduction of a Pencil with/s Basis of Transposed Matrices,

We c!:m,sider next g pcu,ailt\l’n which one of the basic matrices is
symmetric, the other skew\gymmetric. Let there be a matrix peneil

A=A pa, . 4D
the basis thus gei;'.m\'_siiug of a square matrix 4 and the transposed, 4.
H we pus AR = R= R, and 4 — 4’ = § = —§', together with
AN aqu=9p A—p=20, ... . @
we hags AepBAdoS, . o v .« . (43

Where B ig symmctrie, § skew symmetrie.

A Now, by transposing the determinant of the pencil, ‘we have
. | PR+ oS|=|pR + 68 | =| pR — o8 |: further, to each

E_l;mor of A, let us say | pR; + 08|, there likewise corresponds &

Seamposed minor | pR, — oSy | of equal value. Tt follows that the

tqll_enee.g, Ay, A,, ... consists of even polynom_ia]s in o; and =0
© Wvariant factors of the pencil A must contain factors like p -+ ao,
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p— a0, a =+ 0, in pairs. The elementary divisors of A wnid therefore
be of the types p?, o?, and (p + ac)” paired with (p- - us),

By Lemma III, if suitable eanonical matrices of typie =imilar to
the pencil itself can be constructed, with preseribed elementary
divisors, the latter being of the nature Just indicated, thou « congruent -
transformation is gvailable.

First, ther, if the pencil A is singular and has a miniins] number
m, the minimal relation A = 0 induces A’s’ — 0, which nwain implies
A%’ = 0, where %' means that — o has been put for o in «. Henee,
ag in the Hermitian case of the previous article, to cuch {inimal
number m there corresponds m' = m; so that appropriate{ydmatrices

A

are of the form L, L', placed symmetrically acrosg gt.}l;’t. ragonal.
Turning next to the non-singular core, we can dutld up the e
quisite invariant factors as follows: %)

Case I.—Elementary divisors of type )
(p+ao) = g, (p—ao) = é}o'\;a F+0, 8=+ ':;

The following types of submatrix Mgt the Tequiremeis:
N 8-

LR Y

|' KA 0 B
[; ‘9], R0 00 | e 4
8 . L K2

& I

N b

L4 8 .

MK -

Fach of these,on inspection, has among its first minors 021, §2r-1

with H.C.F)unity, so that the submatrices are elementary; they are
also of the desired type pR 4 o8,

:Qﬁs’é IL—Hlementary divisors of types p?, ol
\:; Consider the specimen submatrices (where {he asterisk denotes a
TO):

[p]: [P z]’ {P # :':ls
P o
i- pool 0], o p-I

—0c p

(45)

s e
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They are of the type pR - oS, and satisfy the conditions. Those
in which ne :stevisk appears are elementary; but those which have
an agterisk, ropresenting a zero element on the diagonal, as the skew
property roquires, fall into two elementary submatrices with equal
clementary divisors, It will be shown that this is necessarily the
case, In thai crery elementary divisor of the type p* wmust be accom-

 panied by aiicther of the same value.  This fact, and the complementary

~ fact that el entary dimsors of the lype o™ ™1 must also ocour in pasrs,

are conscqiiices of the following Lemma,

Lemma IV.-—A4 matriz with an odd number of unils in the d’iagoml\

tsﬁe remainiig elements being zero, cannot be equivalent to & skew WA
- —-—S" Ny

Proof. Tt M be a matrix of order #, having units %0r the first
2p 4+ 1 elerieuts of the disgonal, the remaining eleme"ﬁi}; being zero,
We wish ta prove that the proposed identity P@Q =8, |Pl=F0
[ @] =0, is impossible, K2, M

First, if 3 is a unit matrix I of odd order) so that n=2p+ 1,
the Lemms i3 true, for the determinant on the'left side of the identity -
would be non-zero while that of the rig];ﬁ;would be zero, since & skew
Symmetric determinant of odd order, Wanishes. :

It however, # > 2p -+ 1, congider the (2p + 1)th compound of
the propesed identity. The cqmpoﬁnd matrix M2+ has unity for
leading elerent, the rest zerog~Also, by Sylvester’s theorem (Invariants,
P- 87), the compounds P& and Q2+ gre again non-singular,
while we note that @' is skew symmetric, since evidently com-
pounds of odd class 4f skew symmetrie matrices are skew symmetrie,
compounds of eyeh.tlass symmetric {of. Invarianis, p. 106). Thus
Fhe Gﬂmpoundgiﬂientity exemplifies a case, p =0, of the proposed
identity; smdﬁt"wﬂl be sufficient to consider this case. Suppose then

i 1

that A\
mf;Fiblx ”:’ ‘:1 ] [911 “] = [ : 8:!,
N Lz P .o Yy G —s 5

where the matrices are of order v, say, and have been partitioned

Symmetrically after their leading elements, so that u, v, s are Tow
“vectors, and @, y, ¢ are column vectors all of order » — 1. The

continued product gives

[Pn?n 3011‘“] - [ . S],
$g11 L .—-8’ Sl
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Hence one or other of py;, ¢;; must be zero, so that in uuy case both
s and ¢ are zero and both pyu and 2q, are null vectors, Again the
submatrix zu cannot be skew without being null, for we must have
(ef. Chapter I, p. 4) 2;u,=0, z;u,—= 0, and also Tyl —= — Ty,
from which it follows that in any case all elements ,u; of the sub-
matrix zu are zero. Henee if the matrix § is skew it can only be null,
and finally the null matriz cannot have odd rank and be equivalent
to M. Hence the Lemma is proved, :

The Lemma shows that, on putting p = 0 in any canonicaldorm
Ulp, o) for the matrix pencil pR + o8, it is impossible by ej}lﬁyalent
operations to bring all the elements o, to an odd numberinto the
diagonal. A consequence of this is that submatrices like ¢h¥ canonical

types - [P .

L[ oo
p @ , or |: aNp |5
p UJ N
p R
or an odd number of such submatrices,*have no equivalent of the .
type pR + 8. The only conclusionljs that pencils of this type must

Possess an even number, and canhot possess an odd number, of ele-
mentary divisors of the types p¥ and o2+,

Summing up, thereforel, we see that the possible types of submatrix
to which such penqi]s\‘.jf = M + pA’ = pB + ¢S can be reduced
by congruent trangformation are the following :

1) [i iail [A 4, [A H ]

L 3 21 A o

‘.'s\“ A+Cﬂ»-‘

(23[ }i—{—cp:l Atop oAt
O Ledtp ’ |. oA+ p J
At u At ep
veey cFE L
P

' P p v 5= LA+ pl-
3 o o,
3 el .L p ] pa e JLor:%-(A»—#J-

— & P—O'



iX] CANONICAL FORM OF CORRELATION. 139

o
P-| p o
4 Pl R R
i’ J £ -
p o p — 0
—ID —a -l
I' fe
(5) [ UJ, TP . v, and
—G p l— —o p ’.\'\
— p x \“S\ A
o N
AN
(6) [ "], MRS PPN ‘> . (46)
g —0C ) .\\\' X |
—_ P .‘\

&/

By taking A= 1, p= 0, we derive as’a spema.l case the canonical
submatrices for a cm‘elatwn that is, fo;;the congruent reduction of a
single matrix 4, square or rectangu]ax *The types aze these:

o] 1 1} S 3 N

—
—

et el

N
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[ r
T
|
1 I
6 , e (4T
CHN » )
-1 '
| —1 1
This completes the investigation of Chupier 411, p. 94, Ghich
went no further than obtaining a Jucobian form. The aboye” work
has been confined to the case of a symmetriclii hags,"and bes
not been extended to the Hermitian and skew Hermitian case, for

the reason that there the argument is foiled by & Yessential dis-
similarity of Properties; for example, the determity6it of a skew Her-
mitian matrix of odd order does not neccssar’ify vacish Identically, -
but is usually imaginary. O '

9, N

15, Rationg) Canonical Form of the F«’;ﬁéﬁing Pencil,

It remains to find a rationa] canonical form for the pencil just
congidered. The submatrices cgr.’;eéi)onding to the minimal nembers
in the singular case are rationals and so also are those corresponding
to invariant factors of the types pr, o% that is (A 4 u)7. There remains
only the cage of e]emen(ary divisors of type (p + ac), a 3= 0, and
since these oceur in Pdits in any invariant factor, and since the
elementary divisors*ge+1 also occur in pairs, we gee that such an -
invariant factor_{s)a, homogeneoug polynomial cither odd or even
in p, but certainly even in 0. We therefore choose two special forms
of the rational’canonijcal submatrix, D,(p, o) or Dy (a, p), satislying -
this cor%’fi’ion, namely, e.g., .

A\ (b4p o
O b v
@\ Dﬂ(p) 0’) = 2P p r
N c p
¢ p
bap P
: bop —p -0
and D,(o, ) = (48)

—-—p — g ) » »
e

—p —
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and proceed to wienlify them rationally so that they assume the type
pR+ 8. AN thai is necessary is to alter the sign of every other row,
or eolumn. Thu: bv rational operations we obtain the desired types

symmetrical in » and skew In o; for example
bep - 4P —p
—byp —o —p —bap P 1
i q and —p —C , (49
—e —p ‘ { p©
—r O\

according as 7 ix even or odd. By Lemma IIT & congruent tzafsfor-
mation exists, not necessarily rational, which reduces the-pencil
pR4- oS to » shape which may contain the above submatfices; and
as a particular case we may supplement the list of typeg for the corre-
lation by rational canonical submatrices such as

)
9, N
b4 1 b4 ..’\“ —1
[ —~b, —~1 —1 QYL
2 T \ >l — | (60
[ 11 and o L -l (50)
-—1 —1 a1

—I—1

. N\
E_Xamlﬂe whether a mticm} canonica]l submaflriz can be constrocted for a
Peneil based on an Hermitiap’and a skow Hermitian matrix.

= the invariant fatbors an elementary divisor of type (p + =)}
Eﬂly be accompanig@if o &= w, by snother of type (p — o) This
0 coefflicients %ﬁbfbe alternately real and imaginary.]

mugh necess

will cause

#
|

16. Historical Note.—The irrational canonical form for a pencil
of quad}'@%icﬂ wag given by Weierstrass in 2 classical memoir, Berlin
Monnish. (1868), 310, or Werke, IL, 19. The existence of singular
pencils was mentioned by him but excluded from discusgion. The
discussion of the singular case is due to Kronecker, Berlin Sitzungsb.
(1890}, 1375, and (1891), 9, 33. A treatment by ratienal methods bas
recently heen given by Dickson, Trans. Am. Math. Soc., 29 (1927),
© 239-53. The Hermitian analogue of the quadratic pencil of Weier-
Strass has been given by M. I. Logsdon, dm. Jour. Math., 44 (1922),
254, but the signature test is not investigated. ,

A rational canonical pencil for Hermitian and quadratic forms,
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somewhat different from that of the present chapter, appears in
Dickson’s Modern Algebraic Theories, Chicago, 1926, 127 8.

. The theorem that in a pencil based on a symmefric and a skew -
symmetric matrix elementary divisors of the types pt, o241 must
ocour in pairs was given by Kronecker, Berlin Monatsh, {15874), 397,
or Werke, I, 423. Later proofs are due to Stickelberger, J. fiir Math.,
88 (1879), 42-3, and Frobenius, Eneye. des Se., Muth.. §, 2, 463-9,
They are connected with generating serics for the reciprocal matrix
pencil and incidentally with the methods employed by Darbousdor
the reduction of & pencil of quadratic forms (to which we'\shall
briefly allude in the next chapter). N\

The actual reduction of a singular pencil, for the genbfal cases
of a eollineation and of a correlation, is still outstandiy,

Concerning the description and enumeration of{t¥prs of pencils
of conics and quadrics we may refer to Bromwickisd'ract (Cambridge,
1906), 46-7, 60; or Milton, Linear Substitutlons (Oxlord, 1914),
104, 105. The simple enumeration of ty és\depends on the Segre
characteristic and therefore on the theory, of partitions in eombinatory
analysis. Generating functions can, be” constructed for this enu-
meration; see Bromwich, p. 60. «88 also Bromwich, p. 69, for
theorems concerning the signatwie® of real guadratic pencils and
of Hermitian pencils—in partietlar for a proof of a theorem on
the signature, due to Kleid Of. also Bromwich, Proc. London
Matk. Soc. (1), 32 (1900},{3@9. The signature test is established by P.
Muth, J. fiir Math., 123\?1905), 302-21, for real equivalence of real non-
singular quadratic peeils, and by H. W. Turnbull, Proc. London Math.
Soc. (2), 39 (1935),232-48, for Hermitian and singular pencils; also
G. R. Trott, dniJ. Math., 56 (1934), 359-7T1. Other treatments have

N\

been given (by M. H, Ingraham and K. W. Wegner, Trans. Amer.

Math. Sa€,'38 (1935), 145-62, J. Williamson, dm. J. Math., 57 (1935),

475-903 3 Further writings on singular pencils are by A. . Aitken, ¢.
JeMath. (Oxford), 4 (1933), 241-5, H. W. Turnbull, Proc. Edin, Math.
Segl, Ser. I1, 4 (1934), 67-76, W, Ledermann, Proc. Edin. Math. Soc., Ser.
IT, 4 (1934), 92-105.

" A paper treating of combinants based on three matrices, by O. E.
Brown, Bull. Amer. Math. Soc., 87 (1931), 424-6, cites earlier work by
S. Kantor, Sitzgh. dkad. Minch., @7 (1897), and Monatsh. f. Math. v.
Phys., 11 (1900); also G. E. T. Sherwood, Thesis (Chicago, 1922).



CHAPTER X

AppLIcATIONS oF Oanonicar Forms To SoruTioN OF LINEAR
Matrix Lguarions. (OMMUTANTS AND INVARIANTS

L. The Auxiliary Unit Matrices.  \\
£ N

In non-commutative algebra the equation AX = XA o
triviality, but possesscs an interest which has lately been ‘?ffiﬁforced
by an application to quantum algebra. To effect a generalsolution—
that s, to find the most general matriz X which comumles Wwith a given
matriz A—we introduce the reader to a few furthef\properties of the
+ auxiliary unit matrix U (p. 62). A

The immediate action of U and T upod sny matrix X = [ay]
with which they conform is that of franslaieng the rows or columns,
one place up or down, left or right. We have in fact,

— | ®st1,d ’g’v}.‘ _ . .
Ux- [ ) ] 2 [%J o
XU':[xf.s"{ig 1 XU=[", @l

The notation means, fo}@ﬁample, that the vjth element of UX is

Zyyq, ; Where the oﬁgi:u'al first Tow has disappeared and the lowest

10w of the product matrix is zero. Similarly for the others. These

four operations 4e 5o useful in practice that it is convenient to signalize

their eﬁects\é&\ff}llows:
O

o\ UX up,
m:’\’.' - U'X  down, Ve e e . . {2}
\ ) XU left,
XU right. /

The matrix X may, of course, be rectangular.
Lemma I.—The general solution of UX = XU s
X:wgf—|—xIU—|~w2U2+...—E—$,._1U“‘1Ef(U), {
| dtrary paramelers X where U d¢

3)

namely, o polynomsal involving n arb

the auwmiliory wwit matriz of order n.
143
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Proof —Tt X = [,] we have

Ty Ty .- ¢ T Ty
Ty Tan .. L R S i
Ux=|. 2.2 S S L xo
Tn, Tng
e e .. . Ty Ty

Equating elemente standing at the 4th position of tlise matrices

Bitl,s =Ty Ot <<n, Tyt -1 ()

O
N e
and 2y =gy =...= T = Ty = o0 0= Ty g == O On  writing
@y for @y 4, we conclude that e\
{ ¢
Ty Ty Ty NI B
N .
0 % wEg2s
X e 4 ¢ '\ - - . . " (4)
. - Xy L R o
..................... \A.’}.......,..
. - Ty

The equation UX — XU exprfeésés the fact that comec-ut-if’% and
thezefore all, elements of the pifhcipal diagonal, or of a parailel diagonal,
are equal.  On expandingX in the usual way (p. 62) we have the
above polynomial f (Ql‘;’;\and the Lemma is proved.

L&

' Conversely, E‘rs,ls evident that f(T7) commnies with U, though it
not at once eﬁpa‘.rent that this gives the general solution. Again, the
series Tx\xw", 5 2, U" are evidently solutions: but they are no more

=1
gengré’la\ than the series already given, since Ur=10 when r >n
Thé parameters @, (r > n) aze in fact illusory.
\ 4 Corollary.—T%e general solution of U'X == XU" 45 X = f(U’).
Lemma W—1If U and V are auailiary wnit matrices of orders t
and s respectively, the general solution of UX = XV s the reclangular
I X s matriz

X:f(U)Irs:Irsf(V), e e e e (5)

where T, 15 the unit matrizc of * rows and s columns.
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Proof —DBy 7, we mean
Lo==[, 1] ifr<s, I,= [Is] ifr>s . (6)

The proof i similar to that of Lemma I. For X to conform with
U and V it wst have 7 rows and s columns. The number of arbitrary
parameters ir: f{{) and in f(V} is equal to the smaller of r and s: all
others are illuovy.

EXAMPLE ' A\
It r = ¢, 5 - 3, tho general solution of the equation O

i xﬂx]xn;:

ot .1 -
| R . _ . Hp fF) .
1 X=Xi: . I:I in X—. ) "‘\%n

This can be written altornatively, to illustrate (5), Ms\

. . A x;‘“”.iz Ty 1 . .
¥ o A\
T 1. %y 1 ms _ . T T X R
R | R a KL S 1
%y N\ %

Hero f(U) = ] + 2,17 -+ 2,0% + 2389, so that f(T) is this four-rowed square
mabrix, whereas f{V) is the three-rdwed square mabrix.

If, however, » = 8, & = 4, théfl.}
N\

- 1 Ty B Xy W
Ty @y gy . . D om % 2
i R ~[ LT A
O .
N 0 ity

7N\ .
In these t Sexamples the number of arbitrary pi}cra._nlt‘-tel‘ﬁ is three. In
fact Zy, &y, & dre the necessary parameters, while a3 is illusory.
Ay .
emma IL—If o0 and o, B, y are scalar, the equation
} T -
oX WBUX 4 yXV = 0 has only a null solution X = 0.

Proof.—The matrix equation gives
a®s; + By i+ Y- = 0

If o <= 0, the elements 2, Tead from left to right along the bo’d’;om
10w, then on the next higher row, and so on, are all found to vanish:
and hence X = 0,

(x 420) - 1



146 APPLICATIONS OF CANONICAI, FORAIS [Chap,
Problem I.— 7o solve AX = XA.

Solution.—Reduce 4, which must be square, to clussical form
HAH =[ol,+ U]=C, . . . . (D

8o that the given equation becomes H-CHX -~ XH-1CH: or
O0Y = YO, where Y = HXH-Y. By finding a genera! solution’ ¥
for the latter equation, we can at once determine a gonorsl solu&ion
X = H'YH of the former.

Now C is symmetrically partitioned (p. 6) into sabmatrices
Cyla), Ci(B), ... : let ¥ be partitioned into [Y,;] in exaqtitvile same
way, so that ¥y, is a square submatrix of order p, and ¥4 i¥voctangular
and of orders p X ¢, and so on. For example, if there\ate two-by-two
partitions, the equation 0¥ = ¥ becomes o\

oI+, Yo Yﬂ B [Yn Yw:[ [al.,,_-' e, J
[ ‘qu‘i"]?il I:Yn Yo N Y€§722 AtV

Hence, equating the appropriate submiarices, we have
(aI,,-—[— U)Yu: Y]_l (alp"l‘ U)»j"(é'lm_]" U) Y12: Y12 (Sfﬁ"}_ V)s (8)
and 20 on. These two equatigiﬁé are typical of the case in general,

when there ate » X » partitions. On cancelling out identically the
first term on each side 6f“the first equation, we have
ne)

N7 UY,=Y,U,

and the values\'of ¥ ;. are given at once by Lemma L
Simﬂarl&i from the second,

O e pY Y- TT =0,

Wh{%fé, i o= B, Lemma IT applies; and if « == 8, then ¥, =0 by
. Jenima 111 Similarly for each. partition.

N\ A submatrix Y, which is aligned with two distinct latent roots
of 4, upon the diagonal, is accordingly zero: aligned with two equal
latent roots it is triangular and of the type alrcady under view. .WB
have therefore obtained s general solution ¥ which can be epitomized
by writing

Y=Uny fsUN1=[fs(U) o), . - - )

where f,,(A) iz an arbitrary polynomial, unless 4 <= j, a= p whep
16 is zerg, -
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EXAMPLES
LI AY = ¥ and HAH = O = diag(Oya), Oolar), OoB), C{B)), x B,

- bhen the Sepre obovicteristic Is [g f] » and we shall have

I R R A
« 1 P
.ol :
e 1
C == - a: E » . ‘\:\'
B 1 O
N
L : B _ 'w~\\.
"% % T Yo Yi: 4 1
T I 3}050,1\\“5
_A;.\.‘.:'.'L..-....__:-.. -
zZ & H\h: P
HAYH=X—= g1 o\ o | : H,
s LT
N Ea Ex flo
) b
Li\- tjl T -

p 7 ‘Q,I

whore 2, @, ..., <, are’d% arbitrary parameters. _ _

;._ If the Hegre charaqtépjgtic of A is [p,;], the number of arbitrary parameters

18 A/ '

Puut 3PP 5psy + o + P+ 8P 6Pt et s

whero p, > 7. 2 pe e 5 oaeee

[Count the mimber in each submatrix of ¥.]

3. Wl\ifé ‘down the form of ¥ when «— B sbove; and also when the Segre
chm\ﬂﬁi{ewiétic is [g 2 1],

in

. 2. VEI‘ify the worldng rule: To form Y, fill pach non-zero ‘3111_3m&t‘$xtﬂb§
gonals, starting from each right-hand top corner, end coutin
0% or & column is completely filled. .

2. Commutants,

~ When 4x — XB, X is called a commutant of 4 and B; f}ﬂﬁ;;
8 sometimes written X — (4, B). Evidently we bave already foﬂ
 the commutan (4, 4): and the more general case (4, B) will follow
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by the same methods. It will appear that, wnles+ ! 11l B have g
common latent root, X ean only be zero. Tf .1 urii /7 rectangular,
we shall suppose that just enough zero rows or cainni. are adjoined

to either, to make them square; but they need 1t b of the sarne
order.

Problem IL—To solve the equation AX = XR, % . A and B are
given square matrices,

N\

Solution.—On throwing 4 and B into classical fomr« A4 — HACH,
B = K-1DK, our equation becomes CY = YD), why - } L HXK
Let ¥=[Y,] be partitioned by horizontal lines . coform with
C and by vertical lines to conform with D. The prig™ding methods
will then apply: and if q; is the latent root of C aédviated with its
sth submatrix, and if By is the corresponding I:Lttﬂ.‘lg\ rect of D, then
Yﬁ 5= () Oﬂly if oy = ﬁ,‘.

o
EXAMPLES/
1. B C = diag(Cy(a), Cy(a), C,(B)), D>Ring(C Yy Calih Go(B) Gilnd)
where @, B,ya.llﬂi?ifer, thzet:) 13”.:,:" diag (', (x Wy 1
-3-'0 x‘l"::.’. -
no ‘
P S N R
\\"yo ¥
A\ Yo
‘\ L . - o by, .

The non-zero"sgb\ﬁatrices involving z and y correspond to $he fwo a-submatrices
of U and théoné o.submatrix of D. Of the thres partitions by rows, the upper
pair refeptova and the lowest to B: of the four partitions by columas, the first
‘refers tc’f;q, the next pair to B, and the last to Y.

. 25Prove that & commutant (4, B) is also a commutant {f{d), f(B)), where
‘QA) T3 a scalar funetion of 4,

3. Prove that the mth compound of a commutant {4, B}, of two square
matrices of equal orders, is equal t0 a commutant of their mth enmponnds.

4 i, and only if, A and B are equivalent in the collineatory group, they
have g non-smgular commmutant.

The .theOrY of commutants js virtually a theory of partial collinee-
tory eguivalence. Matrices which have no commutant have no common
latent root, and may be called totally unequivalent: those which
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have comyiiiunts must have some common latent root, or roots;
and such iay be called partially equivalent, Those which have
identical I: letesit roots and identical Segre characteristics are equivalent
in our orivi ] sense.

It is - that fhe solutions to Problems I and IT are not quite
final, in ¢hat the problems must, by their nature, possess rational
solutiong, = hercas the clagsical forms which have been utilized are
irrational. We leave to the reader the consideration of the rational
solution. ' ~

N

3. Bealar Funetion of a Matrix. .\“\

Problems HIL—To find the general malriz X which cmmnmes with
every P wiich in turn commutes with a given A. o\ 3y -

4

Solution,—~We require & matrix X such that PX =\= XP whenever
P4 = AP, Reduce 4 to classical form H-'CH, €aking ¥ = HXH,
Q= HPiI-1. Then we require a ¥ such 13]1{11& Q¥ = Y@ whenever
Q0= Cy. _

I, as before, ¢ = [Cpla], (i=1, 2 v), then the matrix
[Co (8.} | commutes with ¢ for all Values of the B:, and is therefore
4 particular @. Taking » distines. values 8., we infer, by Problem I,
that the gencral ¥ which commutea with this ¢ is

Y = Gg(f, (), foF) )+« o o (10)

containing again » d;a}nal submatrices conforming with those of C.
If all v latent roots @ are distinct, this is the solution. But if two or
more are equal 186 18 $aY a; = o, then a possible {} which ¢cymmutes

with € is ,\:\
¢ \" ' Opt(a) Iaalwg .
Q) . O ld) oo
LOMe=1 . Ol ] FTMT ™

\ )
Bus it follows at once from the condition QY = Y¢ that
fr, (U) Iz;;lpg = Im;r,fp, (V)s

or simply f, = f,. Hence the arbitrary parameters of f,, can only
be distinct from those of So, if as o a55 80 that the number of para-
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meters included in ¥ i3 at most p, the sum of the onlows p, of the
submatrices of highest order for each distinct latent ruct. In other
words p is the order of the R.C.F. of 4 (or ). _

But this ¥ will evidently commute with every comisiatant <, O,
and hence affords a general solution of the problem,

EXAMPLES
1. T O = diag{Cy{a), Cylar), CofB)), a = B, then Q
. To Ty T v @ Yo Wil "\:\
reas( | 23] [0 2] [ 70
Z4 0 Y

A
" R

containing five arbitrary parameters, AN
W
2. Find the valus of ¥ if « = §, showing that it has"t}h'cc parareters.

4. Connexion between Matrix Funetions azi(;%ﬁuantum Algebra.
If by a regular scalar function of\ A we mean a function f(4)
o
{p- 73) capable of polynomial form\Y. a, 4%, then we may prove the

ay i=0
following theorern, SN

Theorem I.—Every matiic X, which commutes with every P which
o turn  commudes withNA, is o reqular scalar function of A

Conversely of X = BA), then PX = XP whenever PA = AP.

Proof —The coomverse is verifiable at once. The direct theorem
follows by Bro‘ﬁng its truth for ¥, when A is thrown into classical
form . Bgt\,by taking the above form ¥, with its p parameters, and

. ; : p=1
ammmg\hat Y may be expressed as a polynomial X a,C%, it follows,
B =0

on-gomparing typical elements, that there are exactly p lincar equa-
\”:‘igns for the g, in terms of the parameters and the latent roots of C:
hd that these equations are compatible and uniquely scluble, since
their determinant is the non-zero confluent alternant belonging to the
chief invariant factor of €. :
For instance, in Ex. 1 above, the alternant is A(acaf8B). This
proves the theorem.
Thus we have two distinct, but entirely equivalent, definitions
of a scalar function of a matrixthe original, and now this new
definition, which incidentally has the advantage of immediate exten-
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gion to infinit- mntrices and to other non-commutative entities. It
is, in fact, t:1':-1 by Dirac as the starting-point of a funetion theory
in quantum slsebra. We have space here only to hint at the interest-
ing investig:tion which can be carried out merely by mvoking this
catalytic age.t / in order to establish a functional relation between
4 and X, awi without recourse to the latent roots of 4.

EXAMPLES

1. ¥ X is = function of ¥, then ¥ iz a funotion of X.
o 2. If X is « function of ¥, and ¥ is a function of Z, then X is a fundfidn
4. N

PN
| %

B, Scalar Functions of Two Mafrix Variables.

: v |
Problem IV.—To express a scalar funciion of any nynber of square
mairices of order 1, as a function of two matrices. O '
2.\

Solutivn,—Consider the identity M
A= [ay] = 2 ag UrAU=207, . . . (1)
Li=1 N

“where U and U’ are the auxiliargunit matrices of § 1, the identity
following immediately from theproperties there cited. Here we have
expressed the matrix 4 as a-sutn of n? matrices, one for each element

@1 and each term of thédunt is a matrix containing the single element
t;; I jts proper position,in an array otherwise null. )

By treating eaci{3¥gument 4 which enters into a Sﬁala‘r function
gﬁ(fi, B, C .., §f Jseveral matrices in bhis way, We evidently reduce
1t to a scalar fuhetion (U, U’) of two matrices only.

A o

n-— 1 In
there are

s in U

It Wlﬂi}} noticed that U’ appears to the same power (
cach M0 useful bub not an imperative restriction: for #
iféstly many alternative ways of expressing 4 as a series In
and U7, Besides, there are other ways of choosing & pair of matrices
I terms of which all square matrices of the same order can be? expressed.
For instance, if J = [8. wts_s is the secondary unib matrjx'of_ p. 11
(expressed in the Kronecker delta notation), then i general if i3 easy
to verify that _
JU =0, 7 =JUJ, U=JUYJ. . (12)

Hence any funstion (U, U} can at once be expressed as a fur_mtion
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either of U and J, or of T’ and J, where no longer both, bt one only
of the matrix arguments is singular,

EXAMPLES

1. Show that Urfr . pre—r-1p6-r—1 _ 1.
2. Bhow that f(U*)J = JF(U), {(U = Jf(T7).
3. The operation of J can be described as follows: JA4 totials rows of A
about a horizontal bisector: AJ reflects colummns of A about a vertical biseétar,
4. Solve the equations () UX=4 x'7, O\
(i) UX = + X7, A
(iit) AX = X’B. .

A\
[Find, by the Bylvester formula, p. 76 or otherwisg, tHe aquare root of BA.
Ther, X = 4=V iE = vEA . A7, What reatrictio{m bovern A and B7]
N

5. Bolve the equation XAX — B.

6. Symmetric Matrices and Resolution, into Factors.

Problem V.— 75 resolve o given ,sg’@'aa'e matriz A into two symmetrical
factors. a0

Solution,—Tt is only ‘nec;éésary to resolve the canonical form
HAH2= B into two symmetric factors €, D; {or we may then take

A = PQ, “Svhere P — H-CH'-Y, Q= I'DH, . (13)

giving the symuieiric factors P and @, consistent with the equation
B=0D. W

This regolation of B in turn is effected by a similar resolution of
each submatrix Cy(a) of B, an operation which was in fact performed
on p.AI32, when the Weierstragsian canonical form of a pencil was
sonsidered. This at once gives a solution

N Wl W [Cu(e)] = €D, O=[J,]=¢", D=1, (14)

where O (a) is a typical submatrix of the classical type, J, being the
corresponding secondary unit matnix, so that [J,]2 = [[,] = I. Tl{e
symmetry of D= D’ follows from Ex. 2 above, in that Cy(a) i8
a simple linear instance of the polynomial f(77).

Manifestly there are a great many alternative ways of performing
i resolution of B,
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EXAMPLES

o 1 . [ .1 -I 1‘ .o -
@ 1 . I . . &1 -|
J.
% R R A I DDA I A I8 )

. z

5l I_ . IJ L . BJ

4 1. B 1
2, If f{{’) is an arbitrary non-singular polynomial in ¥, find a unique poly-

nomial g{I7) surh that fF{ITHU) = of 4 T. ~

3. In the symmetrie factors ¢, I} either the first or the second Fubmatrix
whose prodnct is Cf«) may be derived from an arbitrary noa-singulag paly-
nomial £, {17}, 75D ¢

[Either take O = [f(U)][7e) D= [Jy)[g,(D)], o the same with f and ¢
interchanged, Then O = ¢, D= IV, | O] or | D] # 0.] 7 .

"
4. A collineation may always be resolved into massi?eﬁ@r_ reciprocations .
with regard to two quadrics S and I/, ai leasi one of which 3 non-singular.

[The polar of & point % in a quadric § has a polef ?\\‘Vith Fegacrd t0 a second
guadric 2. The two quadrics, in this order, seb ap *‘3}00]3“63‘“01' A. Oom.rersely,
by Problern V, any collineation A has two symnetric factors P, Q, which de-
termine two such guadrics. \ v/ . .

If ’Qx — 0 and wPuw’ — 0 are the poing and fangential equations of these
quadrics, = and u being contragrediehty vectors—point and prime vectors
respectively —then the polar of the peint'z in ¢ is the prime-vector z'¢), while
the gole of the prime « in P is the pomt-vector P, .

Successive reciprocation give\w= 2'Q, y = Pu’, 50 that y = Pz, 3 we
remember that ¢ — ¢, Heneé'y'— dx]

5, What geometrical ‘c&exion is there between the latent points of the
collineation and these tyorquadries? |

[In general, thé “w vertices of the common self-conjugate simplex of t_ge
quadrics are evidontly latent for the double reciprocation, and therefore coincide
with the » latént points, This gives an ¢ prioré reason i favour of this algebraic
theorem. ] %“
6. i |.:P | + 0, show that the pencil AP~ 4 ;@ 8 equivalent $o )\I—}-'p.A;;
and, that the collineatory reduction of 4 0 classical form induces & CORZIUED

reQ.l@ibn of this pencil.

%, Investigate the possibility of regoly
which are symmetric, Hermitian, or akew.

[Restrictions such as those holding for the p
be imposed. P and ¢ can both be Hermitian, ¥, and
corresponds 8 €,(—«) when o i8 complex. ) .

It I and @ are respectively symmetric and skew symmetTic, thenothere s
be submatrices Oy (), Cpl—e) oceurring in pairs, for mh caag o= . .

If hoth P and ¢ are skew symmetric, pairs O () ¢.(¢} must oceur, or
each c:.]

ing a given A into two factors P, Q

encil A -+ A’ on p, 135 must
only i, o cach Cyle) thers
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7. Invariants or Latent Forms of a Matrix.

We shall now give a brief account of latent forma. ruough to show-
the scope of the theory, and how it lustrates the sol:tion of matrix
equations involving the auxiliarics ¥/ and U'. Just us an ortho-
gonal transformation = Ao, (d’A=1), leaves n woriain quadric
v'ly= ¢J¢ unchanged, so a more general raatriy iz capable of
possessing similar properties.

Suppose that f(z) is a polynomial in n variables i, then flz) is
said to be an absolute invariant of the transformation ¢ = 4@ if,

and only if, the following identity holds for all values of TN
¢\

FO=fn=fm o, (s} O 0y
If flde) = ¢ . HEEX {«}, where ¢ is a scalar exprestion indepen-
deut of o, then £ is said to be a relative invariggtas T cither case f(z)
is said to be latent in the transformation. !

The several non-homogeneous parts of\a" polynomial invariant
are themselves invariants, as is seon by changing = to px in (15), where
p 18 & non-zero sealar. Hence we maycenfine our attrntion to homo-
geneous forms, Again, if f(z) is an, ihwariant of A4 then f(Pz) is an
invariant of B=P-14p, (| P | #£9). For we may write Pz for &
in the identity and obtain (F(4Pe) = 4 f(Pz). Bui 4P = PB:
S(; that f(PBz) = ¢f(Px) fovall x. Hence f(Px) is an invariant
of B, A

It must be notxicgd,ﬂia} f(4z) is not a scalar function of a matrix,
but is actuaily a sca \function S ..., ) ofn arguments, written
in the contracted (Rotation,

A\
N
N\ EXAMPLES

1 Sh& that the linear invariants of 4 are given by the latent primes of
the collineation 4,

:EH .Evfxg is the linear invariant, where ¢ denotes the row-voctor of it 5 co-
\?D{)?ents’ then by definition vdwx = gvz. Hence, if v = 0, o is equal to & latent
.

The general values of v are given by u(4)/(A — af), where u is & veotor of
maximam grade p, §(4) is the R.CF. of 4, and where o is any one of the v

distinet Intent rocts (p. 71).]
o 2. ébsolute linear invarianty exisi If, and only if, there is a latent root equal
unity.

8. If 2O is & latent quadratic form for 4, then 4’94 = ¢Q.
{This followsy directly fror the definition,
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4. Adapt i concept of invariance to the case of several sets of variables:
more especinily o contragredient sets w, &

i 8= f(uA_l’ Az) = @f{u, z) £0, 1u, ).

§ If wBr i= a latent bilinear form, for 4, when £= Az, 0= ud~? are
contragredient transformations, then 4-2B4 = ¢B. Hence the problem of dis-
covering lateni hilinear forms for a eollineation A is essentially a problem of
commuta,n [N

6. The general aolotion of UX = oX U is

X = H,f(U},
where H, = diag (1, «, o2, ..., %), B ,\:\'
NN ©
1 a1 1 [ 11 s \/
7 [ 5t o 1 o = ocotii=‘ot 11"’?:05*0-.
o2 & al @ .'2’1 :
S\
8. Latent Quadratie Forms, N

By Ex. 3 above, if ¢'Qx is a quadratic forn\ lﬁ.tent- in a transform- -
ation A, then
4'Q4 =49, Q =Q’. .. (16)

It is possible to discover a general‘ solutlon { by throwing 4 mto
elassical form, just as in Problef®, p. 146. In fact if C'= HAH™
and Q== JI'YH, then \

C{K‘g’: ¢Y, ¥Y=Y7 . . . . . (17}
and the problem is‘réd.ﬁced to the canonical case. To solve this we
shall first consid;%:t»\hé following equation '

\’15" X+ UX+XV+UXV=0, . .. (1§
"\

where ﬂ,i‘i':sca!ar. As in Lemma III, p. 145, on considering elements
i; of Zyin the order row, — , row, >, . .. , it follows that

A% Hade0 then X=0. . . . . . (19

- Ifa =0, the equation can be written
UX 4 XV + UXV =000 U'X = X0, 0=—V{I-+ V)—l (20

The most convenient way to solve this is as follows:
; be enclosed in a

Leb three adjacent elements y, Z; s+, Loty
] TR S | Tt 'trhe

gnomon: then the sum of these three elements must be zero.
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|

gromon slide about right and Ieft, up and dows Ty osch g Way as
never to overlap the right, and the bottom, barricr of ey iTay, although
—_ ]
]
. Typ Ty Xy ... Py |
P i
- x21 z22 9:23 Fay, i
r"‘__" .
S B T | #a3 Ty ~
. B N
. ! AN

T By Ty ... 2, i C
it may overlap the left and top barricrs. In this \\-'a.yf’.m‘gnomon will
- enclose one, two, or three elements %i» Whose_ st always zero:
and its movements give a precise topologicalkagetunt in agreement
with equation (20). These facts follow from § 1, p. 143. since the
shape of the gnomon and the boundary datditions are determined
by the manner in which U’ and ¥ ente¥ into the aquation (20),
Now consider the mth term T, of the following sequence:

. —11’:. .
T =0, Tzz[bii} Taz[— —1 3J,
N ) I —11

1( - |

e e AU

\ L =1 2 3 .

7ol 1 -1 11

which evidenﬂ{':mtisﬁes the property U'X + XU+ XU =0,in

the case whellin = g and X=T7T, Ttis indeed clear, from the

gnomon property of this cquation, that the well-known Pascal trjangle

of binmi;}al coefficients up to the order {m — 1) must he intimately

Gf{ﬁneéted with- the solution. From this we may readily infer the
nerdl solution of (20).*

In fact, by.explormg the square array [z;] in the order row;—,
oWy, . . ., it follows that all elements Ty (4 4+ § << n = m) above .
the secondary diagonal must be zero. Next, whether m and » are
equal or not, if X, is any solution, so also is oX,, and again XV,
and again aX, V2 and so on, where g is scaler. Hence the series

L =aXtaX, x| oSV, (22)
*Tucidentally 7,5 _ 1 Cf. J. London Math, Soc. 2 {1927}, 242-244,
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iy a solution, it ¥, is a particular or key solution. This is secured by

taking
X, =7, if = n,

X.]:[I;ﬂ] fm>n . . . . . (23
Xy=[. Tn] itm<n.

Solution (22} now resembles (4) in Lemma I, in that it contains and
arbitrary row or column—no longer the top Tow, but, for example,.
the bottorn sow in the case when m = . ) \ \J)
We infer that (22) is the general solution of (20), and tha it/con-
tains p arbiirary constants, where p is equal to the smaller of % and 5.
The arrzys (21) are unsymmetrical : it is, however, Egésible to bage
8 symametrical solution of (20) upon the matrix $

) | D
=
2 =5
S2ﬂ1: . 2 *-:—T 1 -1 ... :S’zﬂ-p .(24}
—2 m—ql
2 i‘—f—l

—2 51,

) S

N\

y * - .

. N
where there ate *%*r +- 1 rows and columns, with a central (r -+ 1,7+ '—l_)th
element 2.\Here again the gnomon condition is satisfied, the numerical
values of the elements being given by forming the first diﬁeren.ces by
columhs” (colypy — col,) of T,, and rearranging the results in the
mannér indicated. (For instance, (1,4, 5,21=1(1,3,3,1] + [»1.21])

The general gymmetric solution of (20) is given by

X =5y Xy + b U X U -+ bU2X, 0% ...+ b, U7X T =X, (3)

where there are # -1 arbitrary constants b;, and where the key

solution ia Xy= 84y o1 [ g ’ ] according as m i3 odd or even.
. Ogety :
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The general X is, for example,

21, [‘ . 'l
X=,: 25, —ba:l, S B f_zé’ﬂ :
=3 L—28 —b (n == 1) L: —oo, o 2,

Returning to the equation (17), let ¥ be Partition.i in accordanee
with the submatrices of both C and ¢~ which we tiks 0 ba alf 4+ 0,
a(l + U} instead of the usual canonical type ol -7 4 stepwhich
is justified by Ex. 7, P- 185, if @ == 0. This leads us to rovrite dqiation
(17) in the forms (\)

NS ¢
a(l + Uy, a( + U)Eéyﬁ; Y=Yy, « —r % . (26)
WUV VB + V)= 47, v, = Y, P50 (@)
\\

But these equations are of type (18) with a weplaced by (o — PP
and (af — &)/ respectively.  They therefors admit of the above
non-zero  solutions (25) and (22), pch’*ia‘ed that & = a? or af
respectively, \S

If « = 0, the submatrix oF + U maist take the place of afll + O):
mn this case the equations (26) andy{87) are slightly modified, but they
10w can only have a zerg solutidhy seeing that ¢ == 0. In this way the
general solution of the origingh 4’04 — ¢ is ascertained.

o

(3 EXAMPLES

L™
1. Generating Flmct}n of the Key Quadratie Forms,

The quadratic forms whose matrices are Sy, 8, 8, | .. present themselves as
eoefficients of Powers’of u in the ascending series for the expansion of

g:o\L 68+ 602 4 o034 (o F eyt -+ ot o .. ),
where 9.7‘\\%"5'!' (1+ ). and | u | < 1, and where all the symbols are sealar.

This function i evidently a quadratic form in the arguments
N\

~\. c= {cg, Gy Ogy }
4
\Let it first be written ag a product of four vector factors
¢. {1, 6, ge, G0, u, w2, ., .1.e,

which are alternately of the row ang column kinds, Onp conbining the middle
Pair it becomeg » double alternant,

I, w, o,
’ G; Bu, ﬂuz, PR — s
¢ [83, 6%, G0y :I ¢= e,
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where @ can eviicnily be expanded as an sscending power series in #, with
matrix eoefficicirs. Lot this be done, and in eack term let the sealar % be placed

ag final factor. Ve obtain
Qe = . |
1 . .1 -1 1-1
0'[1]0-1-6'[__] ] eu-t-e'| 1 —1 . {eutte 2 1 Tdewd ...,
' 1 .. - t
-1
where for shostnoss the leading and non-zero principal submatrices alone have

been written. i, on transposition of this scalar expression, we have ¢'@’c = ¢'De.
By adding tozcther these equal forms we obtain a symmetric coefficient mairix,

. —1 '—2 . . N
.1 2 1 2 ¢\
2 Qo= 0'!'2]G+G’|:1 —2 . |ewtte| R L P N

9 2 . .. ¢

&
= — 8gh®  sud — gutfmut — .00, O
.
where the cosfficients sy, are evidently the key guadratics 30 ﬁe ¢; with the
suffixes written in the reverse of the usual order, -
\/

$1= 26,7 & = 26" — 26, — 4:60%;-\ v

2. If Q is o symmeiric matriz latent in C= ol U), a0, there exists a
m;‘;“;i; ;;?:;g?;mﬁm K'QK = Q, such aka.c K _pommutes with C, and Q i3
- OIQ(}: E.fz.g.. >

Take E=(c,]+ ¢ U+ c, U ‘-[—: + e, U,

Q= +a U’Qo,(; ‘f:- B T M un-t,
in acoordance with the known p,m"j_:;éﬁes of a commutant (C, €} and a latent ¢, -

Our problem now consists § “Jéfermining the n coefficients c;. Write the
Squation 0G0 = &2, in’the alternative form

| UG+ U) =~
Sine |14 77|+ gp0bt — U+ U)=©. Then U= Q;0, whenoo
100, = Q,f 1Y \The proposed equation, K@K = @, can now be written
(ol + cDOF ..} (@@ + w U@ T + .- Yl + U+ ) =G
On commu\tiﬁé ©, with each power of U’ on its left, the corresponding power of
® is ghtaiped. Thus
-\Qo;(cuf F 6,0 .. ) (@l + &OT 4 .. ) (e + o+ .0y = Qo

¢, On showing that this scalar

&R equation which itt U)= i
| which can be written @, ¢(I) Yhe theorem foﬂmfﬂ_ by retracing

tunction @ of the single matrix IV is in fact unity,

the previous steps,
It thercfora remaing to choose values of the ¢; which reduce the scalar ex-

Pression, . . : -
o(u) = (gp 4 60 + .. .) (2 + 0% + R OISR 2 S B
to wnity, where 6 — —u/({1 + u). By the previous example
Q) = (o — syt b syud — st 55w — .- (Go+ a0UF oo
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Bince ay + 0, the reciprocal {z, + a,Bu + . )7 may be enaded in agcending
powers of w: and, if gfu) = 1, this determines the 8; uniqn {"rovm the known
8; successive anitable valnes of the & can be found starting aiiii ¢, = 1; whence
the matrix K iy determined.

The alternate coefficients ¢,, &, €+ v o, MY be talten to fu vern,

3. An orthogonal matriz can be found which will fransfurin iy orthogonsd A
tnio a given equivalent orthogonal B,

Let 0 = [o(F - U)] be the modified canonical form of brih 4 and B, with
Ad=HOH1, B= KOK-'. From the orthogonal propertics, .1'd = BPB=1I, it
follows that 0'QC = @, where Q= H'H » and that C"RC = R, whae R LE'EK,
80 that both @ and R are symametric,

2 the preceldifigyexample

Next let a non-singular H, be constructed by applying
to each modified submatrix of ¢, and combining the results. T

HO= CH,, H/'QH, = (&), o A\

Y

M,
7\
Ny

where [Qy] is the corresponding diagonal assembly of key iiih.z.-::‘.trices. Taking
H,~ HH,, we find that ~\

H,U8,™ = BH\.CH"\H= HCH = 4, H/H, — HYH' HH,y = 2QH, =[]

Likewise & matrix K, = KK, exists such that< o
KyCK,1 = B, ;K;’Ks = [Q].

Hence, by eliminating ¢ and [Q,], botﬁ:bf which are non-sinpulaz,
PEPi@ll, PP,

~ ¢

where P = H,E,-1. This is thie ori:.hngonal matrix required.
This complotes the proofiol Ex. 14, p. 109, which only referved to the case of
- real elementa, +€ )

\\ .
9, The Resolve:\lt'. of a Matrix.

The rec;ipi@éa,l of Al — 4, which evidently exists for all values of
A other, thaty the latent roots of 4, is a matrix function of the scalar
A, andrigicalled the Resolwent of 4, -
Nt 1
~O R = T )
@ Al —A4

Evidently it is a scalar function of the matrix 4, and as such is eapable
of assuming several useful forms. For example, if « is the latent zoot
with maximum modulus,

1 1 2
then ;\__—FZ:I—F%_l_AF—{H”" [Al =] e]. -_(29)

There is also the interpolation formula of Nylvester, which expresses
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the function as o volvnomial in 4 :

. . , of order p— 1 or less i
i3 based on ¢ the 1 LW, of A, where g oo and ek
Pld) = (o - o in(d —apl)Pu e, Tpy=p =+ ay.

4
EXAMPLES
LIFg{d) =i 27y (A — BIP, a=+ B, then
! 1 . I
. s B 1 . A
1 Pt Bn 2B 1 A2 A\
=4 i | T BTCD
4% 53 332 BB As 2% N
SRV SIS S \*
A% B G —pF (R—BP
A . z? 0"
= l_lla - .}__‘..‘_'-’io_ + . ﬁ'_ + = A = MB—Q&L%’
A d T - er ! - P O —anh— %
h 3
where the numerators A;; are cubie polynomials in A,'Ob%iﬂed by expanding the

?ﬂetr;rmina-nt by its final row, The B;
effceted by ordinary scalar algebra.

T

"

8. Verify he Hilbort Functional Equation {
(h— ) RO R(w) =R — BR).

e

are also cubics, ik #; and the whole process

We infer thas the resolvenerb() may be regarded in three distinet

ways, either as a geometrieal progr
partial fractions E(A;;/‘{J\’E\L a;)? ) suTm:

d - LY N
etermined by the Scgre characteristic of 4; or thirdly,

fl].nct.ion B (M
;-‘flli in ?., of orcie}\ Tess than p in both. T
i tﬁfatwna.} fragtion in (22), p. 43, where such
we e gqa,yl}m as the starting-point of an
. mapsadopt what was in fact the origina
ca Teverse the present argument ‘and deduc

nopical properties from those of the resol

but sketeh the outlines of the theory. -

Cthe numerator of which is a polyno
here wag implicit allusion to

a funetion appeared Dot
important, theorent. Indeed
| line of development, if
e the various classical
vent R(}). Here we shall

ession in A/A; or as a series of
ed over the range of values

aa a rational
mial in 4

10, P . .
0. The Adjoint Matrix and the Bordered Determinant.

Let # and y be column vectors of order »;

linear form in x and y. Now consider the product

E

(E 420)

1 [‘% —fJ [

Iy
1

I

4 4y
x'A4

then f=ao'Ay 18 & bi-

_ ] (30)

1z
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involving matrices of order # - 1, obtained by attachine the indi-
- cated borders of one row and one column to I, or to 5. The deter-
minant of the left-hand side product is obviously -- 17, Hence, .

it 4]0, xﬁ 14 4.
y=f=—|2 |+ |4

Write o' = Ay, o' = A’z, so that 1 and v are row-vee bors, ’Ifhen

vA~ 4w = o' Ay; go that \
vd = [4 v —:-!Alz—-(a*" RIS 11,
v, v; . O

This is called the reciprocal of the bilinear form =’ 4 & Phe nature of
the numerator determinant may be inferred from EX/3, p. 7. Since
this identity holds for any non-singular 4, we magreplace 4 by AT — 4
and obtain

\/
(A — A)ty — ’ ABy; — @y "'\‘!ET__ | AT — 4. (32)
Y NS
The numerator determinant which, whon expansion, is clearly a poly-
nomial of order 7 — 1 (or ess) in, T bilinear in the u,, »,, while the
denominator is the characteristle function

FO=0 =0 @ B 0 —w) = py ), . (3)

where a, B,..., w a,fe\t}%.ﬁ latent roots, including possible repetitions,
When we remove the C.F., let us say x(A},- of mumerator and
denom.inator_, the, relation becomes

ANS

f\.'.};(?;l—A)‘Iu’:v(fE_JIB,-)P_"‘H’gb()t))u', . 6

where u{ %\ﬂ) is the order of (). This gives the rational fractional

form AT — )1 — B(X)/ () for the resolvent, which is in fact

'd'exitiéa] with the result obtained ahove from the converse point of
W, the verification of which we leave to the reader.

EXAMPLES

1. Show (i) that 4 satisfies the equation ({4} = 0 as now defined, and no
equation of lower order; (ii) that {{4) iy therofore the R.C.F. of 4; (iii) that
x()\i Is identical with the HL.OF, of all {n — 1}-rowed minors of the determipant
a“ .

[Consider the identity (A7 — 4) By — Y. CE p. 43
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2. IE () 4 e APt ... ¢, prove that
B,=1, :
Bi=A+el,

By— A* A+ e, ...,
B_’D'—l = Ap_l + clx‘lf‘_’-l- P +Gg—lI'

[Use ordiz.: - - Jong division.]

Il Orthoger=i Properties of the Partial Resolvents. |
The pre. 1t investigation leads to the classical canonical fofm,* ..
through th- oithogonal properties of the numerators 4,; whem\the
, fanetion B3}/ (X) is resolved into partial fractions. If all fhe Istent
roots are (diziinet, let us write : - ‘ 3 _
) A\
R, : B0

' B B B2 B0

RN=— .1 _ —
@ AM—4 A—a A—ay %\\f:an $(A)

where the » terms are called the partial reso}vénis’. They satisfy the
orthogonal conditions Y . :

R2=R, RE, .3,26;2" ik ... . (36)
the proof of which depends upon tﬁé&&eﬂﬁﬁeﬁ ' __
A= Rioy 4 Ryay + .., 4 Rpa,n, r1=0,1,2,3,... . (3T)
The first % of these reIa,ti(;\.jsé\j Nv;hich arise by comparing eoefficients in

descending power seride or A, can be solved by the usual scalar
methods. For exaniple’ . -

Ll an D). (Al _nld) g
PN g (e —en) ()

let s sagy ij‘ﬁfith similar results for all B, Hence also o
NI — ) B =N = (A— au(H = (A — a)g:(X).

identically for all A. Tt follows that ¢(4) =0, as we already know
(p-41): and also (by the observation that A'— a, must be a factor of
the polynomial g, (A} — g, () ), that 4 ~— a.l is a factor of B,— I.

Hence R(R; — I is a polynomial which contans all n facto.rs
(4 — a,I), and therefore vanishes with ¢(4); so that B* = B Again

if 4 % 4, R,R; also contains all these n factors, and therefore vanishes.

- Thug the orthogonal properties are established.,
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Analogons, bub less elegant, properties may be infirred in the
general case of confluent latent roots. The classical casznical form
follows by showing that this resolution into partial fruciions is vip-
tually equivalent to the now familiar partitioning of tlic classical
C= HAH into canonical submatrices. We shall not wursue the
matter further, beyond indicating in the following examples the general
connexion between the alternative theories,
Q.
EXAMPLES

1. B C= HAH = [ 8], in the simple case (where ali o; diffed \tEen

N\
I .. .. ). .
HRIH—lr.[. . ] HRzH-l-:I:. 1 J H.Rﬂf-&::}{. . }
- e A o\ .1
'\'\
and eo on for % rows and columns, Verify the orthogonhd properties.

2. Show that J— R By, + Ry 4—a,R, -+ Ay + oy By,
fll) =l et flahy 065 B

"

a 1 \
3.IfHAH‘1=O=[. @ :|
B \\

4 Ay, 4
d = %n . odn , 4,
an R(R) {)L‘_ R) +‘I?}'_ 0!)2 -F (7\ — ﬁ)’ [ S ﬁ!

then

HA B = [ 1 'l(\i@}.wﬂ‘i: [ - -:I, HAqH' =], . . |

4 I in Fx. 2HL p, then 4,, disappears, and Ha H — [ i ]
H 0= diagl@é{é)j Cola), Go(B)], @+ B, then 1
‘N L
m{f}iﬁ’}fﬂ-—:diag(l, Li; 1,Y 0,0, HA A1—| = . 1
N H Ay 1 diag(0, 0, 0; 0, 0; 1, 1), )

5. In‘ gencral 4,2 — 4. A= Ui"—f,‘AﬁAH =0, i+ k& where U; denotes
the totality of auxiliary unit submatrices associated with the latent root o,

12. Application to Symmetric Matrices. Reduction by Darbouxz.
Returning to the discussion of the adjoint matrix (p. 162), if
d=4" we may take w' = Ay, ' = 4o, and



£ REDUCTION OF DARBOUX. i6s
4 o
v

aﬁy:u4W=_‘

A4 Ay
+ldl=— = 4].

This leads =i once to the reduction, given by Darboux, for expressing
a pencil of quadrics as a sum of squares. In the simple case when
(i) 4y is new-ingular and (i} the latent roots are distinet, let

A=Ay 3 1y, [dy| 0, |4+ A4, |1 4| =T A—X) =$(A).

Then b\ tiw ordinary rule for determining the coefficients of l\mztiﬁl

fractions, Ao :
| n + _..'( ""‘L .
P - |A]=—% A+ 24, u = {4, ({\— AFA )
RN i—1 4 .

since the numerator on the left is of order lesy’ than % in A, Opcrate
on each of these # determinants with o\ :

" % ”
N o
col,yy — _E]col, Y rq\zi’r,ﬂ.l ——I_EI% TOW;,

= RS = :

two processes which leave theit values unchanged. We obtain

~ %

- A
4, + M4, '\Yx_" A) gy =S A, ] (A— A)d (A) },
cA—af)ﬁ,'AE ) {14 (A,

where #ig scalar ’Bat the cofactor of 8 in its determinant is_[ {{1 + "_*"42 |
which ig zero:\’%ence 8 may be omitbed: and Wwhen this is done the
factor (A —-Qi,j .may be isolated from the final row, and fmﬂ[ the final _
column, nd from the denominator. After cancelling we obtain
4 ~\' ¢
@\ A . . y: | ;
\“%'Ay=—z()l—")l§)\Al+A!Am 2y‘+|A2!¢(Ag)-

E‘ ’Agg .

B, 2 {,where
w oo

But the numerator determina.nfs are now of the type

[ B;| = 0: and, by a theorem of Bellavitis, such, & type may fb% 1_\;
solved into two linear factors (Zas;) (ZB80y). In p:?rtlcular, ; ;.;he
symmetric and z = w, these factors are equal'. After mcorporaAm_g th
denominators within these equal factors We.mier that, when 4 = 4,
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We may express the pencil ¥’Ax as Z(A—A) &2 whiomn the & are
linear functions (usually complex) of the 2. Thus

m!Alx =—2 )‘i §i2, $’Ag$ =X §€21
f H
which effects the reduction of Darboux, snd brings ths two quad-
ratics to the sums of squares. '
For the confluent cage, we may refer the reader to an ex i
Jessop: Line Complex {Cambridge, 1903), 191-8, The full 4

use of bordered determinants of higher orders, and of confluent
In the end the result attained is naturally the szme as that of Wi

,132).

The above treatment may be utilized, with the necessary restiiciinag wpbn the
values of the As for the case of Hermitian pencils, O
13. Historical Note.— Matrix equations of the 4pge’ 4¥ — XB

were considered by Sylvester, Comptes Rendus, 98 ‘1530, 67, 115, _
The type AX = X4’ was treated by Cayley, Afess) Murii.. 14 {1885),
176; and the type AX = X4 by Voss, Sigzh. Akod. Hliinch., 19
(1889), 283-300: and Taber, Proc. Amer. gc.\, 26 (1891}, 64-6. The
general linear equation of many terms ¥ds considered by Sylvester,
C.R,9 {1884), 409, 433, 527, 621; and’more recently by Maclagan-
Wedderburn, Proe. Edin. Math. Soe.., 22 (1904), 49, and F. L.
. Hitcheock, Proc. Na. Aead. Sci8 (1922), 78-83.

A chapter of Hilton’s Homoyeheoys Lmea?Subsm'tutions(Oxfc‘rd, 1914)

is devoted to linear substitutions permutable with g given substitution,

An aceount of analfy:tib functions of matrices, as based on the

theory of permutable tlices, is given in a paper by H. B. Phillips,
Am. J. Math., 41 A1919), 266-78. In this paper a general Taylor
series is derived, (A thesis, O, Matrizregning, by G. Rasch (Copen-
hagen, 1930), concerned with the application of mutrix functional-_i'ﬁf
to the solutioh” of difference and differential equations; it contains
" {p. 109—1%3 nseful bibliography,

P, A‘ M. Dirac’s definition of maetrix functions in quantum
mechanics by means of Permutable matrices is to be found in Proc.
Camp. Phil. Soe, %3 (1926), 4124, or in Quantum Mechanics
(Oxford, 1930), 41. (The use of ¥ and U’ of infinite order on
b. 125 is also Interesting. )

The use of bordered determinants and partial fractions in the re-
duction of quadratic forms is first found in classical memoir of Dar-
boux, J, dg Math., 19 (1874), 347-96; the orthogonal properties of
the partial regolvents were given by Study, Monatshefle f. Math. u.
Phys., 2 (1891), 23_54.




CHAPTER XI
PPRACTIOAL APPLICATIONS OF CANONIOAL 'REDUCTION " \

Theie is an extensive class of problems in which the behéﬁt\)ﬂr
of a function at some eritical point depends on the naturelef“the
quadresic terms of small order in the Taylor expansion of the urction .
in the immediate neighbonrhood of the point. Many ingfatiges of this
will occur to mind; for example, the determination{of 'the maxima
or minivna of a real function of many variables, $he,disoussion of the
form of o surface near a given point by means 0f‘the indicatrix, the -
stability of dynamical equilibrium, and so fo Ij{}ve shall first consider
briefly the problem of the maximum ¢ hwinimum of a quadratic
form itself, which we may suppose reduted by a real non-singular
congrient transformation to a f_orm:i’lﬁfolving squares only. -

. The Maximum and Minimuug }b}"a Quadratic Form,

The reduced form may be positive definite, non-negative definite
of rank r, or nullity n.:a; ¥, negafive definite, non-positive definite
of rank 7, indefinite, or\ﬁha]ly null or zero definite. Clearly a positive
definite form must. hgve the minimum value zero for zero values of
all its variablesg%/the point zero, as we may say: it is pointwise
minimal for afig’h directions. In the same way a negative definite
form is poirfwise maximal at zero. A non-negative definite form of
rank ¢ ig{Minimal at the value zero in the wide sense that it cannob
take neative values. One may say that it is pointwise minimal for
corbain’ r directions; but since the # minimal conditions, namely -the
Siim"ltaneous vanishing of its » reduced variables, involve r independent
linear homogeneous equations in the n original variables, the s:o_lutian
of which has # — ¢ parameters, we see that the form retams the -
minimal value zero throﬁghout a certain linear locus of n — r dJman-
sions. A similar remark applies to the maximam of a non-positive
definite form of nullity » — #. Again, an indefinite form s stationary
at zero, but can obviously attain either positive or negative vailues .

“in the neighbourhood of zero, so that it possesses neither 2 maximsl

: 167 :
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nor a minimal value. The case of a null or zero definite form is trivial,

These remarks might be amplified by a classification. of cases of
low order; but a few examples of quadratic forms taken 54 tho point
zero will be sufficient illustration,

EXAMPLES
1. The form az®+4 b2y L g2,1 iy positive definite, pointwise minimal for
all three directions at {0, 0, 0}. A
2. The form (az + by)? - 622 is pon-negative definite of nullity 1, rank®,
pointwise minimal for two direetions, with a minimal ling , .\t\
ar+ by =0, ==, (NS ©

Ny

3. The form (ax + &y - ¢z)? is non-negative definite of nudlity g, rank 1,
pointwise minimal for cne direction, also minimal in the plane)y

"
ax + by + oz = 0, )
4. The form d”xs- by® + 0222 is indefinite, neithér Wiaximal nor mwinimal
at the point {0, 0, 0}, 9, N

8. Interpret the above, with reference to e]'_!ip\;oids, cylinders, planes, and
hyperboloids, z, y, 2 being rectangular Cartesit\co-ordinates.

If next we add, to a quadr&fgieifdrm, finite cubic or quartic or
higher terms in the variables, we,shall find that the only functions
80 formed that remain in general pointwise minimal at zero in all
directions are those for which the quadratic terms are positive definite.
The same holds in e{maximal case for negative definite forms.

Consider for example, th following functions in the neighbourhoods
indicated: PN

(@) =2t g2 ﬂ:%'\ama T o+ ef, ot {0, 0, 0} and at {z, 0, 0, &e.

() 2% + 2 Bt Gt o byt - ons, gy {0, 0, 0} and at {c, 0, 01, &e.

(i) (z ‘ﬁ‘b“‘ P JEap—y at {0, 0, 0} and at {c, —s, O}.

V) (k' + 2)° + az® + By, 86{0,0,0} and {¢, — ¢, 0}, {5, 0, — <}, &e.

AN _
Thesforms in (i) and (ii) are maximal; the form (111} is maximal 1f' a
18 positive, and neither maximal nor minimal if & is negative; whils
the form (iv) is also neither maximal nor minimal,
2. Maxima ang Minima of & Real Function,

Consider next g funetion of several real variables,

$=0@ = dloy ..., .. . . (1)

which possesses finite partial derivatives in the neighbourhood of
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a point &- . { £ 1 at which the first derivatives vanish together, so
that we have, at 2= £, .
% f— 0’
o,
Let us adopt the notation, always at the point @ = ¢,
Tich o2
‘#’a‘ - E.L‘ s (}5“5 = ——‘-’6— = lﬁﬁ, h= {k], }52, sy kn}:

H

f:{¢13¢2s'°°s¢n}: FZ[?Sff:IZF” LI (31

SO N
where % ropvesents a vector of increments ky, all of the same.brder

i=L2%.,m ... ()

of smallness, The Taylor sexies for ¢ st £+ & may then bewritten

BE+ B — O =M+ kP B DL @

where R is a remainder consisting of terms of t@? third and higher

orders. O -
A necessary condition for a maximum‘dg'}uinjm_um of ¢ at £ is
that the vector f should be null; for this ‘ensures that ¢ is stationary

at £. But whether there is a maximufibor a minimum depends first-

of all on the quadratic terms % FhJor those values of fi; for which
f=10. By what has preceded WeNIAy assert:

(1) If ¥ 4s positive definite, s @ minimum.

(i) If ¥ is negative defifite)  is @ mavimum. .

(it) If T 4s indefinide, ¢'is neither mamimum nor minimum.

In the excluded: éaéf;s the nature of & at the critical point £ cannot

in general be afdertained without the consideration of the terms in

R, a coutsq\@h}ch must in any case be adopted if F is .n_qu_. T‘he
limited Sﬁa-t&nent might be made that, if ¥ is non-negaﬁve deﬁf:ute
of ra-n];,(,. ﬁhen_e;b is minimal in » co-ordinates, which are linear functions

of the, variables x,, and that i is so far undetermined in the remaining |

" ‘N,' with a corresponding remark in the non-pesitive definite case.

EXAMPLES
1, Consider the maxima and minima of Hermitian forms.
2. Examine the maxima and minima of the funct_ions: S
() a2yt 4 y— 1), (i) o+ g0 — 3oy, () @ +ay+y—ar by,
(iv) (2* — 2az) (y* — 2by).

D%t 37 z’), )
3. Find the maximum value of (az 4+ by -+ e2)e ieetry +
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3. Conditioned Maxima and Minims of Quadratic Formas.

In many applications it is required to find the maximum or minimum
of a quadratic or Hermitian form '4 @, subject %0 cne or more re-
strictive conditions. Consider for example the problem o A Tining
the lengths of the major and the minor semi-axes of an . ‘nse which

~ bas the equation in rectangular co-ordinates

ax® 4 2hay +- byt =1, ab> A2 A )

o

Let us denote the radius veotor by 7, the vector {z, 5} by » simply,
the matrix of the quadratic form by 4, and the vector « (irecti
cosines {cos 8, sin 8} by p. The problem is then to dutéitaime the

maximum and minimum of « M
PAp=1/{r2, . . N P )
under the condition vp=1. . ,"‘>\ N ()]
Introducing a.Lagrange multiplier A, we ann\\led to considor the quad- -
ratic form _ \’ 4
PAp—dfy . . . . . .. (8
of matrix 4 — AI. The conditiqq’for"maxjmum Or minimuin is then
@sXp=0, . . . .. . @

a set of equations which hés ft;r its solution a non-zero vector ¢ wheun,
and only when, X is a I.%t@t root of A. We have then, for such a vector
Poy A\

. O p’(,\)Apm = APy Poy= A R 1))

which shows #hat the maximum and minimum values of » are A~
and A, wliete A, and A; are the latent roots of 4. These values for
the sen\%&zées are of course real, the quadratic form «’Az being
positive. definite. The extension to the n-dimensional case is evident.

s The problem of the maximum and minimum of an Hermitian form

N&A 7 under the condition Fz—=1 is precisely analogous, the required
values being the greatest and the least latent roots of A, namely
A, and A Reciprocally it may be seen that the maximum and the
minimum of &« subject to the condition &4z =1 are the greatest
and the least 100$s of the equation | ud — I ) =0,

A more general problem involves the maximum or minimum of
» form A4 g, subject to the condition #'Bz == 1, where onc or other
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of the mal-"es 4 and B is positive or hegative definite. It is clear
that in thi: vise the matrix 4 — Al of the earlier discussion will be
replaced by .{ -~ AB, the critical values A being roots of | 4 — AB| = 0.

ic. find the maximal and minimal values of the radins vector of an
sferred to oblique axes inclined at an angle @, has the equation -

ax? + 2hay + byt =1, ab>>

For exar
ellipse whici.

The si:utions of the minimal problem which involve latent roots,.\
other than the greatest and the least, refer to successively added\ ™
conditiorns. It may be shown, for example, by introducing fpfther
Lagrang:> sultipliers, that the mth least root, A, 18 the gmmmal
value of the form # 4w subject to the set of unitary condjtions

Fre=1, Fayr=0, i=L%...,m<l .1

with & corresponding extension to the case of the\gehdition &'Bz =1
and other added conditions, where B is positive’ l%ﬁnite. The prohlem_'
may be realized by considering the princi'pa;l\éemi—axes of a general
n-dimensional ellipsoid, in rectangular of dblique co-ordimates.

4. The Vibration of & Dynamical Sygfem about Equilibrium.

Closely related to the prece(jll:'ﬁg is the problem: of  determining
) er n of degrees of

the motion of a dynamical system of a finite numb
~ freedom when displaced slightly from rest. Denoting by gener lized,
co-ordinates ¢; the djsp@é’ement from a -position 'of equilibrium, ab .
- which ¢,= 0, ¢, = Ong =0, we kmow (of. Whittaker, Analytical
Dymamics, p- 178) ¢hat the kinetic energy T for a small displacement
{:}isa homogepedus quadratic in the ¢ which from the very nature
of kinetic energy must be positive definite: while the poter:}tla!l energy
V with I‘egp}c’t to the position of equilibrium i8a quad.ratl.c. in ¢, not
necesaarii’y positive definite. Further the g;, being denva,twe.s of the
&’ia.&T-if{fbbgredient]y transformed with them. It iz assumed tha; T
afd ¥ do not involve the time explicitly.

The problem then is the simultaneous re
forms V=qgdgq, T=¢B¢ - . .« - - (12)
where B is positive definite. By p. 107, Chapter VIIIz_thl.ase may
be transformed together by a real congruent transformation inte

.. (13)

duction of the pair of

V=§a§1?,-2, T:E'}?f. b

im1 L=l
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In these new normal co-ordinates the Lagrangian equations of moetion
d(or) _or_ ¥ )
dé \og; 0g; g, e

take the shape
Py =0, =13, . .. {13)
dtz ] :"‘?i ) gy sy o v . RS,
Now the roots a, are all real, since B is positive definite {(Ex. 6, p. 208).
If forther they are all positive, then the system has n superposed ghaill
harmonic vibrations about equilibriam, O\
me= G oosVat— € .+ . SO (16)

In this case the equilibrium is stable; and cvidenplyf(E‘iL 7, p. 108)
the condition for this is, as one might expect, thab, Both matrices 4
and B should be positive definite, that is, that ¥ should be a positive
definite form as well as T. PN

If A is merely non-negative definite of kamk 7 < n, then in general
the equilibrium is unstable, for (correppending to certain necessarily
gero values of a,) in certain of the Iew co-ordinates there will be
motions of the type "?(T-:'?'é't“{‘ By .. .. .. D

while if 4 is indefinite o1 qon-positive or negative definite, so that
certain of the roots a, are\negative, there will be motions

,\q\i;cicosh'\/:;(t—-a),— ... . (18

indicating o shillfnore marked type of instability,
N
o EXAMPLES
\% w
1o 8'rod of length 2a is suspended from a fixed point by a string of length &
attathed to its end. Prove that the rod, when slightly disturbed, has tw¢
~normal vibrations; and find their periods.
’ [If 6 and ¢ are the angles which the string and the rod make with the vertical
when displaced, then

V = img(h0® 4 ao?), 7T = im(p2d?+ 2kado+ atet + E2ob),

where mk?= }ma? is the moment of inertia of the rod about its middle point]

2. A system which would otherwise vibrate about stable equilibrinm ‘in
n normal modes of periods 2m /A, where by < hy << - -+ < Ao teceives a constrainb
which reduces the degrees of freedom to » — 1. Prove that if the new periods
aro 2w/, the # — 1 values of w alternate with the a values of A )

[By a suitable cholce of co-ordinates the equation for the constraint may ke
written g, = O]
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5. Matrices @1 Quadratic Forms in Mafhomatical Statistios.

The mui.natical apparatus of statistics has much in common
with the yv:.nnics of systems of particles and of rigid bodies; for
example the urithmetic mean, fundemental in stabistics, is simply
the centroi:!. 1 he standard deviation i the radius of gyration, moments
and procluen. moments appear in both, and so on. Many of the mosb
convenicnt pavameters for descriptive purposes in statistics involve
quadratic:. nd the very important normal function of frequency
i the exponential of & negative definite gquadratio form. Again, the
* principle of Least Squares implies in its name the minimizing of & s N
positive diinite quadratic form. We shall show by a few elementary’y,
examples that the potation of vectors, matrices, and quadratic _f?mns~
is well adapted for use In this department. ‘ A~

We may first note the obvious fact that the vector of pirbii] dt?_-
rivatives with respect to the variables u; of 8 bilineaz~form udz 18
simply 4=, while that of the partial derivatives with vespect to the’
©; is ud. In fact the rule for differentiating witihyyespect 0 vechors
is formally the same &S the ordinary scalar rule:..ifigain, for a quadratic
fortn ' Az, the vector of partial derivatives, with respect o the #;
is 2¢’4, or in column form 24x. N 3

The Principle of }ﬁéast Squares

In the theory of Least Squiares we have a system of observational

equation: ~ _
i .\\ Ap=Dhy « vo0 20 (19)

in which there a.re;ni,‘or'e; equations thar onknowns z. The equa,tions

are also inconﬁ'{ét\eﬁt, becawuse of accidental errors of observation.
Ii we rectify:‘t@is By writing
O\
™« A{E — k =€ =+ ® - " (20)

N\®
whefe e"is a vector of erTors €, then the principle of Least Squares
postulates that the most sapisfactory values of the x; are those for which
the sum of the squares of the errors is @ mANATAR. ‘But this sum ig sirply
¢'¢, namely _
' ' e (A — ) (45— ). (21)

The minjmal conditions, obtained by part'}a]ly differentiating thlS
with respect to the vector & and halving, give the normal equalions

D A
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the relation of which to the original observational equations i« ut once
apparent.

In the above it has been assumed that the errors e, are «.[ cqual
importance and are uncorrelated. If this were not so we shoi have
to minimize not the sum of squares ¢’¢ but some positive definite
guadratic form € Be, that is,

¢Be= (A’ — W)B(dz— k). . . . . {23)

s . . N\
The minimal equations or normal equations of correlaied Least Spdares
are therefors O\

A'BAdz— A'Bh. . . . . > 04)

2 N

The matrices 4’4, or more generally 4'BA4, of the qgirﬁ‘ﬁ‘al comations
are symmetric and, in all practical cases, positive d.{ﬁziit-e.

Quadratic Moments and Total Cowela\mn Coc_aﬁicun.fs

The matrix notation lends itself also to\the expression of 4 jmadmt@c
moments, which play so important a part in the theory of normal
linear correlation. Suppose that a ],arge number m of samples, taken
from a normal homogeneous stockare measured in respect of # corre-
lated characters. The results might be recorded in & table of 7 zow-
vectors each of n real e]emcﬁts “where m > n. If we regard this as
a matrix X of order m X & then the symmetric matrix X X has sums
of squares in the dia, na]’ and sums of produets of sample measures
everywhere else. It %\ he matrix of quadratic moments. DBy rueans
of a diagonal magtix D we may normalize it by a congruent trans-
formation. so thaf-the diagonal elements hecome units; thus

Z”\'.:'\ ’D”X’XD = RJ R = R’, Tip — 1. Lo e (25)

This ma’}lx R 18 the matriz of total correlation coefficients of the n
Van&bles %; as computed from sample measures. It is seen ab once
(B2, p. 97) to be positive definite, and such that each principal
Enor determmant carmot exceed any principal minor contained in
i6; in particular | B |<C1. The theory of partial correlation is based
on the minors of this matrix.

The Normal Frequency Function

Again, the normal frequency function of many correlated variables
can be derived in the form

- ¢(@) =cexp (—La'dx), . . . . . (26)
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where 4 is symmetric and positive definite. We fix the constant
¢ by .oscrving that the multiple integral of the function over the
vector inge {— } to {o}is unity. The integral is easily evaluated.
By a -l congruent transformation H'AH we may reduce the form
#'dx o a sum of squares; thus

v—HE oAdo=EHAHE=EE, HAH=L (@)

_ The Js:ohian of the transformation is then

3(z) ) .
VAR 1 H | = | A]|F, ce HIAH=1I, . (28
107 I e o
The itogral thus becomes a product of n separate integrals, ﬁhha:'
fo} e O
fexp(—%x’Ax)d;DZ | 4 I_*JGXP (— p&eyig
{=w} {—=} 'x.'\\f B
" "‘j\‘ : )
= | AT exp (— 3 €36
(X R

— @A, (29)

by the known result for a siigle variable. In fach the fanction of
erigy, in which the variables are normalized

_multiple correlated frequ
in order o have unit s{?zaﬁﬁ‘a,rd deviation, 18

@)= @y A esp (—hoda). - .0
\.t\'* _ '
san Values of Sample Quadratic Moments

s’\
The\quadratic moments are
V&l%ﬁbl'es. Tt is important in statistics o _
vali¢ of a parameter, regarded as arising from all possible samples
of N measurements. Suppose that in a multiple normal distribution .
any quadratic parameter ¢'B » is under consideration, where the vector
z has Nn components, ordered in groups of n. The mean value of
the parameter will then be an Nn-ple integral, of the form.
- A=}
(%)*}N”['A[*fx’Bm exp (—ye'da)de. . « (31)
{-=} '

quadratic “forms in ‘the sample
know what is the miean
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But this is the coefficient of A in the power series for the iuteyral

{eo}
(2m)=— 4| 4 [ifexp (—4a'do+ Ad'Bzyds, . (32)
{—w}

where X may be given such a value, arbitrarily small if TI2CUNSALY,
that the matrix 4 — 9AB is still positive definite. Again the value
of this integral, as has Just been proved, is the determinant

Q.
[APfa—22B]7 o . L )
¢\
- Now, neglecting terms of higher than the first degree in )\, waNoave
=247 B)3 =14 247B4 ..., N, 134

so that the value of the integral is the coefficient of ASn | 7-- A 41B|
Thus the mean value in question is the sum of tha diagonal cloments
in the matrix 4-1B, or, equally well, in B42N)

The above elementary instances go to,ghow that the methods of
matrices and quadratic forms can bepapplied with advantage to
problems of statistical frequency.  \ ™

EXAVPLES
1. The value of the integral .

e/, {\@“\Jr Dhay + by)e—+er+3) dady

igat+ b asis otherwiza jp'bvious.
2. The varianceofsquared standard deviation, abont the mean of ¥ sample
values ; of a T:.rg,\r’iﬁ‘bfe @ is ;Exﬁ — h;()::x{)*. If the frequency function is

O #(2) = o3 (2m)—bem e,

proye 'E}:;a,i; the mean value of the sample variance is 2.~ 1.

\ 3
6. Sets of Linear Operational Equations with Constant Coefficients.

A consistent set of linear differential or difference equations in
several unknown functions of g variable, with constant coefficients,
can be solved by a procedure exactly analogous to Smith’s reduction
for A-matrices, If the operation of differentiating with respect to
%, or of differencing at equidistant intervals in any of its forms, be
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denotec | - 6, the problem is to find the # functions y,{(x) from the
Boequaii.ng, ‘ '

&y (f-.;.\:' i __Ir_ g ('9) ?fz+ ven "{_ Gin (9) Ya=DP: ($}, 4= 1: 27 cees By (35) o
‘where (i operators @, are polynomials in § with constant coefficients.
Let the nwts of functions y; and p; be written ‘as column vectors Y

and p, =rd let the f-matrix of operators be denoted by 4. Then the

equating: take the form
dy=p. ..o e (36)
Sinee the operator 8, when combined with constant coefﬁc{eﬁ’n; _
n 2 poiviomial, is subject to the ordinary rules of algebra, the mhatrix
4 haz “ho properties of a A-matrix. It may therefore he.feduced as
in Chayter TI1, p. 23, to the diagonal matrix L0

HAK = (E,(0)5,=F, |H|=1, |E}=1 . (37)

H anid K being §-matrices, where the reducti i takes place in the
ficdd of the coefficients of the equations, and {he' diagonal polynomials
E(8) arc the invariant factors of 4. Putting Kly=2 Hp=y,
we huve therefore oW ' '
Fe=ga''. .« .« . .. (39

SN g

But this is a set of equationgdiwhich the variables z; are isolated,
and cach equation can be @olved independontly of the Test by the
regular methods. Finallythe required solutions g, are given by
SO =Kz ... .. (39
A X
: The consisteniey” of a rectangular system of m equations in
unknowns m:{ya\é,lso be treated in the manner of p. 29. .

The number of arbitrary constants entering into a solution 2, is
equal to the degree of E,(8), so that the total number of 811(‘}]:’1 constants
in thefcamplete solution is the degree in # off t}lua determinant | F |,
or N r_ Agajn’ sinee the det’grmjnant IKI 18 mf_;lepeﬂdent of 8, ?-t
least one of the elements in sach row of the matrix K must contain
4 non-zero constant, so that in the operation y = Kz no arbitrary
constant in z is entirely obliterated by powers 01_5 6. Hence the number
of arbitrary constants in the solution y is again equal o the degree
inéof|A4. .

The reduction to a diagonal system Fz 18 not utterly necessary.
A semi-reduction to triangular shape HA =T, where yy; =0, © >,
is sufficient for successive solution, heginning with the last eqlliation.

{4200
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EXAMPLES

1, Solve the simultaneous differential equations:

Dy, — Dy, = ¢,
2Dy — D(D — N)y, — D(D - Ny, = 3e*
8Dy, + 3D%y, + D(D? — Lyys = Te%,
d :
here D =
where gz
2. Solve the simultaneous difference equations; ~
CAy, o+ 2A%, + 3Ay, = 3%, ) a
Ay, -+ A(A ~ Ly, — 3A2y, — 3% _ o, O
AMA+ Ly — A(A = 1)y, = 1, O
where Ay{x) = y(z + 1) — y{z). N
0

7. Historical Note.—Recent accounts of the problem of mexima
and minima of quadratic forms under copdﬁﬁons are to be found in
& paper of R. @. D. Richardson, TransecAin. Math. Soc., 26 {1924),
479-94, and Courant and Hilbert, Mufhematische Physik I {Berlin,
1924), 228-31, the latter treafing\of vibrations and resonance of
dynamieal systems. oS

The reduction of the pair of forms in the problem of small vibra-
tions and the demonstration 8f the linear nature of the elementary
divisors are due to Weighstrass: Berlin. Monatsh. (1858), 207, or
Werke, 1, 233, ¢ \’

An ample discusabn of the application of matrices and quadratic -
forms to problemswaf statistical correiation may be found in a paper
by R. Prisch(\¥ordisk Statist. Tidskr., 8 (1928), 36-102. A vector
notation i.s”\u;s}a, but row and column vectors are not distinguished.

The solution of a set of simultaneous linear differential equations
with‘ap’rﬁtant coefficients was obtained by Chrystal, Trans. Boy. Soc.
Edity 38 (1895), 163, by the semi-reduction reforred to above. For
‘ANgood account of this and fuller references the texthook of E. L. Ince,
\)rdz’mry Differential Equations (London, 1927), may be consulted.

The matrix operator of Cayley (Invariants, p. 113 and p. 72),
which has partial differential operators for clements, has been studied
in relation to matrix operands and invariants by H. W. Turnbull,
Proc. Bdin. Math. Soc. (2), 1 (1927), 11128, (1929), 33-54, 95664,
Proc. London Math. Soc. (2), 83 (1931), 1-21. It has also bheen nused
by J. Williamson to deduce new results concerning the determinants
of Bazin and Reiss; Proc. Edin. Math. Soc. (2), 2 (1929), 240-51.



X1] HISTORICAL NOTE o m

Mui oo of infinite order, which we do not consider in the pre&ent
book, . ue to be studied when integral equations were first in-
vestigu i, at the beginning of the present century. The subject is
of vas: rinye and is of fundamental importance. Great impetus was
given 15 it by an application in 1925 to quantum mechamcs in the

hands - Iltlsenberg, Born and Jordan.

3 ]
L1 Muir, Trans. Roy. Sec. S. Africa, 18 (1929), 219-27.
OF : .ove recent textbooks on matrices, we may cite Lhe Theory of N\

Matric. {Berlin, 1933) by C. C. MacDufiee, and “ Lectures oo Matriges °)
{dmei. ath, Soc., Colloquinm Publications, 1934) by J. H. M, Weﬁ
derbir ... which contains an extensive bibliography. \ O



APPENDIX
FortEER RaTioNAL Cavowical Forys or &4 Marterx

The methods employed in Chapter V and also in findine =
classical canonical form for a real matrix (p. 72} can readily . e
tended to the case when the reduced characteristic function ¥
a matrix A has been resolved as far as possible into its irs
factors within a prescribed field. Suppose, for example, thuf
three distinct irreducible factors 4, 4y, i, within the real ratis.:! |
F, so that no pair of these have any further factor in oy, T
their degrees be p;, p,, p; respectively, so that pg+p, +
the degree of . In this case the leading p X gdubmatrix
p. 49) of the rational canonical form can be b@ken down inte ilire
further isolated submatrices B,, B,, B, wit%}i‘l.\the field F.

To establish this resuit let column veltord x, ¥, 2 be employal, as
in Ex. 6, p. 57. Henceforward let ¢, o, the? ¢b; denote the matrix poly-
nomials (4}, etc., so that each is aafiatrix of order n X » that of A,
and all such matrices commute. oSnce Pyt = o, the R.C.E. of A,
the product vanishes: moreover, each i, is a singular matris else
P, would be a vanishing polynomial in 4 of degree less than p,
which cannot be. Hence ﬁc&l—zero vectors &, ¥, # exist such that

WAEZ0, )y =0, ddz=0. . . ()

By Theorem I, {47, 4 must therefore contain the R.C.F. X of »
as a factor; bupwly has no factors. Hence i, is the R.C.F. of 2. Simi-
lazly for y andfor 2. From each of these vectors a chain can be formed
n the usmalway, such as z, Az, A%, etc., consisting respectively of p;
vectorsswhich are linearly independent in ¥, each chain terminating
becauge of a condition (1). Let a matrix be obtained by reversing these
Shains and then combining them into an extended chain of length p:

Hy =T[4, ..., Az, 2, A"y, ..., Ay, y, A» Lz, ... Az, 2] {2)

so that H, has p; 4 p, + p; = p columns and # rows. Then these
p columns of H, are linearly independent in F. For if not, a linear
relation between them must exist which, in view of the way that
z, ¥, z enter into (2), can be written

Lz - My 1 N2 =0, N )]

180
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whe. - I, M, N are polynomials in 4 of degrees less than py, p,, p3
resyilively, since 4 never reaches these degrees in the expression. (2).
Whereas one or more but not all three of Z, M, N may be zero, let
L+ Premultiply (3) by dyfs, remembering that these matrices
cort-mite with L, M, and N. Then by (1) Lz = 0 and hence the
muoi-ix Lafgfty by annihilating 2 must contain ¢, as a factor (Theorem
I, 1. ©7): that is, say, Lty = Py Since the degree of L is less than
py, ¢ it of the polynomial P must be less than py + P, a8 We see by
cor: “aring degrees on both sides of this identity. Also P must contaln

. ns a factor, which is impossible sine it is of degree lower than >

thri of fighs. Thus no, such identity (3) can exist. Ko b '
{¥ premultiplying H, by 4 we can at once establish the réquicite

cancnical form by means of the identity A

7NN
< 3

AH,=H,disg(B,, B,y Bo), SO @

which is exemplified by carrying out the dstails agJollows:

Suppose , K. e \d
iy — (A7 — 0y A — (A0 — AN — 1) (42 —er A — e ]),
where p, =2, g = 3, py = 2, and 33:-- ‘7, then '

N 1
32 clr
& a1 L
AH, =[dx, =, A%, AQ{),,AZ, 2. - 32 A B I R ()
\ A S
S e A
O B « i€

Here n >0 : _ . _
The &omparison of -both sides of {4), column by column, immedi-
atel}?ﬁétiﬁes this identity, except for the leadi'ng column of es_mh sih-
winteix, But these on comparison are true 0Wing to t-hfa relations (1};
}}T‘example, the first column of AH, i A%, which is (5,4 + )%,
which in turn vields the first column on the right of (5) {cf. Bx. b, p. 57).

Manifestly this procedure 18 applicable to any pumber, two OE

more, of factors , belonging to the R.C.F. f, pr0v1:<1.ed {?hé?‘b no pair o
them has a common factor. Indeed, with this provision ib is not neces-
sary for each such i; to be irreducible. Ttis left to 1';he reader to exan:fu;e :

- what extra safeguard is then necessary in choosing =z, ¥, # to satisly
(1): of. Ex. 1, p. 56.

(E420)

13+
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The Case of Repeated Irreducible Factors,

To complete the discussion we must consider the case whon i has
repeated factors which are irreducible in a field F. Siee s¢ may
isolate the parts of the canonical matrix that belong to ihe Jdistinet
factors of i, it is enough to consider the case of a single factor in vepeti-
tion: for example ¢ = x3, where x is a polynomial of degree ¢ n 4
and ¢ is of degree p, so that p = 3q.

Since i is the R.C.F. of A there must exist a vector z of 1l
grade p (Theorem 1V, p. 52), which is the degree of ¢, such ;
polynomial L = L(4) in 4 of degree less than p can snnililsi .
Now consider the chain O

Ho— Ay, ..., Az z A, . .., 4y, y, A7k, o000, )

where z = yy and y = x&. Expressed in terms of & thﬁ i
[deiyiz, . .., Ax%2, X'z, Aty ..., Axx,g,:‘fiq"lx, S V-3

where y? oceurs in the first ¢ consecutive qoﬁa]_:‘)bnents, y in the uext g,
but is absent in the final ¢ components" Wurthermore, the cofactors
of & are polynomials or single terms n4, all of positive or zero degree
less than p, the highest being of degree 3¢ —1=p — 1. Henee, a8
before, these vectors, p in numbéf,' which form the chain are lincarly
independent. N

Again, we obtain a cansnical form, analogous to (5, only in this
case the units that appgéi"dpon the superdiagonal present a continuous
run p — 1 in number, This is sufficiently exemplified as follows:

Take a;;(A): (A7 — @42 — dy A — TP =

and & maxixz(é.l\éector @ of grade 9, so that % = 0. Thereupon take
y = & a7 = y?r. Then AH = HB, where

SN H =[4%, dz, 2, A%, Ay, ¥, A2z, Az, ]

)
O d 1
- dy . 1
dy 1
AR A T N
B=|. . i . 1. . .. .. D
ds 1
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Agai... all but the firat, fourth, and seventh columns are immédiateiy
veri‘inhle in the left and right sides of the identity AH = HB, while
thes vited columns give A%, A%, A% on the left, and

(@42 + dpd + dsD)2
2 4 (A2 -+ dod 4+ dD)Y
y + (@42 + A + 1T

on e right respectively: which agree, since xé =0, z = ¥, and
y = X'I'-' . )

A
. . 2N
Raiional Commutants, N

: R

"The solution of the equation AX = XA of p. 146 was jg*gfrmna:l,
beratse it was given in terms of the latent roots of the n,8 » matrix
A4, whereas the n? equations for the elements Ts ‘E’f\\& of W]].IU]EL

H n . } )
T ity = o TG 18 typlcal, are linear and raiglonal. To obtaln

BoL B=1 . Y .
+ rutional solution let HAH™ = Bhea ratiqp@lca.nomca,l formof 4,
and let ¥ = HXH so that BY = YB. :Qn‘SO'lving this rationally
we can then obtain a rational X in the fordF Y H.

KNow let B = disg (Bp Bo - - .).?ils'fn (10}, p. 49, or () above,
and ¥ =[Y,, Y, ...] whee Yoy Bas P columns and_n rows, Yo
has ¢ columns and # rows, BD 80 on. Then on expansion the com-

4

mutantal equation breaks glg\iﬂtﬂ
BY"?;\}‘-}DB:D! BYG‘ = Y""Bq’ LT

cach of which cam, he “olved separately. For previty of staterent let

p =3 which ig\ty'picd, agd let ¥y =[2. ¥ 7) with n TOWS. Hence .

we must solde)
o oL -
~’\ﬂj"; Bz, y, o =% % 2. aég_ Lot LB

PR
™ ;]

ﬂ} z, Y, & Expansion gives
(Bz, By, Bz — [d + &y + 4% yl;

whence @ = By, ¥ = B% and, by equating the first eclumns,

(B3—d132-—d23——d3}f)z.—:0. U )

B,, B, etc 80 that

.. denote th R.CF.s of
Let ‘Ibp(B)’ 5"0{3)’ eto., denote © tains its successor

b, = o the R.CF. of B, while each of s Yo » -+ OO0
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ag a factor. Hence (8) is satisfied for an arbitrary z: . i hence
¥, = [B%, Bz, 7] is the general value of this eommutant, whio - being
arbitrary, has » parameters,

The general solution is given by combining the compei s ¥,

g0 that it is
.Y_—_[Ym Yv;u"-]
= [B* g, Br2%, ..., Bz g, By, B, ..., By, it

Bz, oo sl
where  gu(B)lz =10, $(Bly =0, $(B)z=0,.... ()
N\
Subject to these last conditions the vectors «, , z, . . . aré 3 Viirary,
Since #, is a rational factor of i, We may write i, =,*, .+ ., and

likewise 41, = ¢,_,, and so on, in terms of polynomial@uf orders » — ¢,
¢ — 1, ete., in B. The most genetal solutions for x;‘},\z, ete., nre then
given by @ = £, y = ¢, (B)y, 5= ¢, ,(B)L, .S\ "where the £, 7 4
ete., are entirely arbitrary column vectorsyofof such a substiiution
replaces the ¢’s with different suffices Dy . by of, throughout in
(10). NV

1f the number of components Y., Y, . .. sk, there are apparently
kn arbitrary constants among the yestors & =, ... ; but, owing t¢ the
various ranks of the premultipliers, $,_4(B), ete., these constants are
fewer. N

Now the rank of ¥,(B} i8'zero since this matrix vanishes identically,
80 that the » compouents’of the vector may be entirely arbifrary;
and again, by exa.mpk below, the rank of ¢ ,(B) is p — ¢, so that g
may have n — p g arbitrary constants (cf. p. 30); and the rank of
${B) is pg-22r so that 2 may have n —p—g -+ 9 such constants.
The next qug\fs P+ g4 7 — 35 and the vector may have n — p —
¢ — 7 + 3s\components. And so on until all the equations (10) are
utilized’ Since n — P+ ¢-+r--... the total number of arhitrary
constants among the vectors , Y. .18

W —p )+ —p g2 b p gt 3
=p+3¢+5+Ts+...

where the coefficients ascend in arithmetical progression. This agrees
with the total already found (cf. Ex. 2, p. 147), sinee p — 2Py,
¥

g = 2Py, and so on.
i
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‘EXAMPLES
i, 8how that the necessary and sufficient conditions for every non zero vector

it e field 5F to aftain maximum grade with regard to an n X % matrix 4 are
ths: p = n and that the R.C.F. of 4 is irresoluble.in 5 (cf. § 6, p. 53).

%, Prove that the ranks of the successive matrices ¢, (A}, ¢4}, ..., when
v inl the(R), ... are the successive invariant factors of A, are respsctively 0.
foomy+a—2np+g+r— 35 ote -

{A proof by the methods of § 7, p. 79, follows on using elementary divisors
vitly, e.g. if € = diag {Og{e), Cyfor), Co{B) C1(B)) o & B (of. p. 147), $hoea the
wsive nullities of (0 — )™ form=0,1, 2,...8r00,2, 4,5, 5,..., and _
o (0 — BIY™ are 0, 2,3, 3, 3,.... Add the nullities o get that of
{7 - qly{C — LY the rank is given by = less the nullity. A proof of this
ti: xrem by entirely rational methods would be desirable.] : AN

- 2%
8. If 4 has a single invariant factor, prove that ité general commutfent can
ve exprossed as a polynomial in 4 of order » — 1. . N
[Here p =, and 0 = ¢ =7 == ... 80 that, when 4X = X d)nihe number
+{ arbitrary constants in X is ». The polynomial X 4% { =8 ¥ ..., p—1
sotislies the conditions.] \J )

4, When p = n, solve the aquation ) \\:
. ¢ .
[AP Ly, A" 2=, ., ., dz, 7] = ¢ + 54 —|-'\.. + ¢, AT
uzicuely for the » components of @ in terms of A afpd‘the srbitrary constants ¢;.
[Reduce 4 to rational canonical form. If 4*is already in this form then
= {cnmb e es 1G] SN )

L Q.

N3
™
SN g

The Rational Solution of A{: XB.

The rational solution ©f 4X = XB proceeds in the same way.
By iteration 42X = AXB= XB?, 4'X = XB’, and f(4)X = Xf(5)
for any polynomialgfi/In patticular, if  is the R.CF. of B, then
#(B) =0, s0 that(y .

. A\ H(A)X = 0. _
For a nom'z\e\r(; X this cofactor must therefore be singulgr,_ and .4
must har{fé’ one or more latent root in common with B, This means
ihat~ged) and (X), the R.CE’s of 4 and B respectively, have an
IT%\F g(}) of positive degree in A; and this in turn enables ¢ and
to be factorized within the field 5, to which the clements of 4 and
B belong. With the slightest modification the precedmg.methods
apply. Thus, let H-YBIf = diag (B, B,..)=D be_.the usual
rational canonical form of B, corresponding to the first, second, . . ..
invariant factors g, (A), ¢,(A), . ... Then

AX — XHDHA, or AY = YD where ¥ = XH.
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Put ¥ =[Y, ¥,...}; then 4¥, = Y _B,, etc., whence, as bofers,
Ye={[drlp, 472, ., Az, 2, A%y, ...,y ...],

where %, ¥, . . . are column vectors which must satisly
¢9(A)x = 0; BbO(A}y - 01 raay

and where the polynomials i refer to the R.C.F.’s of B. The number
of arbitrary parameters is the sum of the nullities of ,(4), ¢,(di, . ...
Yinally X = YHL ~
EXAMPLES O\

¢\

1. Show that the number of arbitrary parameters is equal to thosin %1 the
degrees of the H.C.F.’s of pairs of the invariant factors, g3} and™Mi(h) of 5,
taken in every way. (Frobenius, Cecioni.} N

[A proof using elemontary divisots is illustrated thus. Cf, A1, p. 148, where
the invariant factors of 4 {or ') are @, = (A — &} A —Fhps = (% — =¥, und
of B {or DY are {5 = (A — )2} — B¥A — ), by = (ASP¥. Here (), com-
puted from the canenical form €, has nullity 5 and NA} has nullicy 1; tofai 6.
The commutant of 4X = X B is then 0.\

$
7

X = [A%, A%, Az, Aza Ay, y)H,

where x hag 5 end y has & single arbitrary qoﬁétaht. The degrees of the H.C.H.'s
of (o, P35} (e Pa)s (@ Psh (Pos Po) are 3, Jo2, 0 with a total 6. So also is the sum
of the nullitics of o,(B), ¢.(R). W

2. Obtain a rational solution of t}::ijé ‘same equation 4X — X5 in the form
X = Kfu, uB, uB*, uB’, v, vB),
where the components #, . .i.*&Enoto the rows of a six-rowed matrix, and where
# has 4 and v has two arliittary constants.

[Reduce 4 to ratidpmal canonical form € where 4 = KCK-, and consider

the matrix KX rowyhy'row: % and v are its first and fifth rows.]
A
Triangular Form of Mutually Commuting Matrices.

Whet ch pair of a set of » X »n matrices 4, B, ..., D commutes
it is Ei)g'sible to find a collineatory transformation H, H-! which reduces
them simultaneously to triangular form, by clearing the whole ares
“that lies below their principal diagonals. To prove this we first note
that by (9), p. 146, each of the matrices can be reduced by I to &
diagonal of isolated submatrices, whose orders are fixed by the numbers
of equal latent roots in any one of them, say 4. (For the 4 of Ex. 1,
p. 147, these orders are 5 and 3, corresponding to the two distinet
toots o and B.) Hach matrix of the set is now in the form diag (D1,
D, ..., D,), where corresponding submatrices must continue to
commute and where all the latent roots of 4, (which belong to 4) are
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equi. for each valueof j=1,2, ... , m. Next, if the roots of another,
B, e not all equal, a repetition of the process subdivides B; and all
cori - ponding submatrices D; mto isolated parts By, where the latent
routs of By, are equal. Eventually after a finite number of such steps
wiisl latent roots are completely jsolated for each of 4, B,. ... D
Hencoforward we assume that all the latent roots are equal for Dy,
anv nember of the set. Also A4,B; = B, 4, for any pair of the set.
Aunin, if the jth submatrices are of order 2 X 2 a further H trans-

foration brings any one of them to the form [A ;] , where €18 eitherd

0 «r 1. 1f € =1 in the case of any one of them, the rest roust sifoal- -
N\, ©

taniconsly be of the form ¥ ﬂ in order to commute. Anél;if; other-

wise, ¢ — 0 for each of them, then they are scalar, In éither case the
theorem is true when 1 = 2. : “‘\ Co

14 now follows in general for any 7 by mdugtion on assuming its
truih for lower values, This s done by throwing A; into classical
eanonical form according to the Weyr charagteristic (p- 80); that is,
the rows and columns of diag (Cp,(a) o) - - .} being numbered
1,2 ,pl',...,pl—}—gaz,...,t]lejf..arenowto be rearranged in

3 =y o= o.

thic order ~
1!P1+1;P1+?2"k15;'--,2aP1+2,---,3:-'- _ )
The effect of this is to e;gpféss A, in the form of + 172, where g ia the

number of its elementary divisors, and the broken sequence ‘of units
upon the over-diagonal is replaced by 2 continuons sequence Upen the

gth over-diagonali@s 1n

% \u q - . i
o a1l .| “
N a 1} il
diag (Gyle), Cola)) =| . _H_a _______ sy = K Lo 1| K,
~O T | et

autation matrix which deranges 123 45
¢ the dotted partitions is explained

L

{3, 2} by the graph 4 %
14

where K is the requisite pe
to 14253. The significance o

on representing the Segre characteristic

which is read in the order ; - and by transposing i€ €0 9 5 which
- 3

exhibits the Weyr characteristic [2, 2, 1].
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When this is done, then any B; that commutes with A, 1 brought
to the same Weyr partitioned form, say, T(Bqg), where {4, 1, ...]

18 the partition conjugate to {py, 20, .. .}; and, I this, all iy the
Byg, upon the principal diagonal is now zero {the 2, 2z, of o 1, p.
147, now reappear above the diagonal BolyTglyrg of derans | o, t).
If no pair of p; are equal the reduction is complete, as in .o cited

example, but i through equalities elements are left within 7
below the diagonal of o’s, then a further H fransformation
them since the theorem is assumed true when g <<n. The:
mamning case is when ¢, = #, which means that the Segre clu

i8{111...} and the matrix is scalar. If any one of the o'
s not scalar, take it as 4 with ¢; << n; otherwise all a;cl-;,}?;-l.i;':--".
either cage the theorem is true, 3

2N
< )

EXAMPLE AN

Prove that, when 4 and B commute, each latent roghof A8 is of the fuoa a,
where A and p are latent roots of 4 and B respechiyely. Generalize this osult,

™ N ’
{Use triangular canonical forms: JOh - S N#a latent voob of f(A, ... ..
Historical Note, N

G. Frobenius treated commutég:nf:ﬁl matrices in the Berfiner Sitzungs-
berichte (1896), 601-614, as also T, Schur, op. cit. {1902}, 120-125.
Recent work upon conirhutantal equations 4AX = X4, 4X — XB
treated by rational methods will be found in papers by D. K. Ruther-
Hord, Akad. Wetensch. \Amsterdam Proc., 85 (1932), 54-59, and Proe.
Boyal Seec. Edinbyrgh, 62 (1949), 454-459. Rutherford stresses the
importance of the Weyr charactoristic; and upon his treatment much
of the above &xposition is founded. See also an explicit rational sohition
of AX =XB'hy H. 0. Foulkes, Proc. London Math, Soc., 2, 50 (1949),
196—29%},§nd a general treatroent by M. P. Drazin, J. W. Dungey and
K. MWoiGruenbers, Journal London Math. Soc., 28 (1951), 221-298, and
thelatter in Proc. London Math. Soe. {3}, 1 (1951), 222-231. Many
}eférences are to be found in the work by C. C. MacDuffee, The Theory
of Matrices (New York, 1946), while his Vectors and Matrices, Carus
Mathematical Monograph 7 ( 1943), confains an exposition of the
factorized rational canonical form of g matrix.
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{. Tind the elementary divisors of the second compound of the matrix
»d - 17, for orders 4 and 5 respectively. : . \
_l‘i‘ind the ¢lementary divisors of the third compound of the c]héa'{cal ’
cars.sinal mateix [0, (w), Cy(B)]. K o, -
" . : '\ X
* A matrix of elements which are functions of a variable z will be/said to
be :Jifferentiated when each element is differentinted. Writing ¢ . S

A = L%%]a | AV
prove the rule for differentiating 2 product of matric@,\namely .
| (AB)o = AwB + 4B@ 0
(A1) = — A Ay ABNVA | + 0

Dieduce the result

@yl B,..., Karea ﬁnite~ﬁl:ﬁnber of matrices of order «, aadif

4 If4d=
A, B, ..., K are a set of the same orﬁéf;‘pemuta-ble with each other and such

¢

=
=3
=

=

~

Ad4BEF ...+ KE=0,

N\ e
prove that the matrices ,@ .., K jointly satisfy a characteristic equation of
tho nth order, namely,

RO R R kkir=0 (& B. Phillips)

AX
[The Cay[ey-H@,mi]'ﬁon equation corresponds to the case, ‘
'S AT —JA=0]"

5. ]:“j.m?l'%e latent roots of & given matrix B which commutes with a given 4.

[B&dﬁée A to clagsieal form HAHT, The elements on the leading diagonal of
thesdorresponding HBH-! are the latent Toots of B.] _
8. 1f 4, B,..., E are permutable matrices of order m, with latent roots
Uy B - ooy #p =1, 2, .., 7, PrOVe that these roots may be taken in such an
order for cach matrix that the Iatent roots of & matrix polynomial flids B, .., K}
are f{u;, By ..., i (Hrohenius, Philips.) o co

[Use Ex. 5.] oo

7. The set of roots oy B+ os ¥ D the
" set of corresponding roots. Prove that if a mat
4, an analytic fanction f{X} can be cxpanded in a converg

(A) £ et @{!ﬁf fO(A)F ees

. 189

precedi'ng example will be called a
rix X is permutable with & matrix
ent Taylor series,

HE) = f(A)+ (X — A
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provided that each latent root of X lies within & circle with cenfre at the corre-
sponding root of 4, within which the scalar function f{z) is convergent. (Ihiliips.)
8. To check a product of numerical matrices.
(i} Two matrices. AB = [ay] [by] = [e]= C.
Add the elements in each column of A, obtaining a row vector @y, @ . . . , 2,1z &
Add the elements in the rows of B, obtaining a column veetor 5. Then the wwilar
a’b is the sum of el the elements of the product C,

(iii} Three matrices. APB = C.

The scalar &' Pb is the sum of the elements in ¢, {W. E. RothL,} 0\
[The matrices may of course be restangular.] A
9. Prove that the matrix P ( \\
1 1 1 1 K
1 —1 1 1 N
e=% | 1.1 O
L S R e

ts orthogonal.

10. The compounds of a unitary matrix are a.go,’ unitary. (Rados.) [Cf
Invariants, p. 165.] \ 4

11. If A is en orthogonal matrix, the peeil 4 — A’ is equivalent to the
pencil A4% — u7. Hence the invariant factors of the pencil are those of A%, made
homogenecus, Ao

12. If 4 is a square matrix theredr{%ist“u_uitaa'y matrices P and § such that
R ﬂ’@ — [o; 8,51 (C. Jordan, Auotonne.)

[{Multiply the above byltg transposed conjugate. We deduce that the o
are square roots of the latént roots of the Hermitian matrix 474.]

13, Tf X = AB and %= Bd, prove that Xf(X) = Af(7)B.

14. Prove that thg matrices X = AR and ¥ = B4 always have the same
latent roots, If G,y () are the reduced characteristic polynomials correspond-
ing to X 'and ¥ \pPove that either §(A)= x(1), or AY(R}= 3 {A), or P(A)= Az(h)

[Bhow by Bzl 13 that Xy(X) = 0 = F{¥}. Then write {(X) = Xy (X),
where q;l;&)@: 0; similarly for (¥)== ¥Y%(¥). Prover-|- 1 =5 s 1 :2r]

15, ThX =[x, y,..., %] is & matrix of & column-vectors Xy Youn., 2 each

conﬁigtiﬁ'g of n elements, show that M = XX, ¥ — ¥’X are square matricos of
orders n and o respectively, which possess the following properties.

H * . - -

(1) They are non-negative definite {except in the complex symmetrical case).
{ii} Their R.C.F.’s are the same or else differ by a single factor M or N.

{iit) If erbher is orthogonal (or unitary), so is the other.

[() EME~ S &aE = % (82) (73 0. CL p. 97. For X, treat X as
a set of n row-veczors.]

16. Show that every symmetric matrix A -+ A° can be resolved (i) into
rational factors H’DH, where I} is diagonal; and (if) into a pair of factors X',
which are not necessarily rational in the elements of 4.
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[ (i) p. 85: (if) K =vD.H)]

17.IfH=l:_q l:l, U= [ '], R:[T I_],evalua.tetbeproducb
1 . 1 . P ]

ol six-row matriced

H R U . . I.-HR
T'a = H B U’] = [ . HR HU’}
H R HE HU' .

showing that the result is symmetrical. _

18. Determine a general real canonical form for a pencil of real quadries.

[Using the real classical canonical forra of p. 72 and the above example, pro-
eted ag on p. 132, The new feature is the canonical submatrix of type T{A% M),
corresponding to an elementary divisor of type (A2 — ¢h — p)°. Tn Exalq, o= 3.]

19. Find every quadric 2’Ra which reciprocates a given non-singitar gquadric
«’4 % into a given non-singular tangential quadric e, (R= RS A, T=T").

[First show that RTE= A4; whence RI'= VAT = f(A{}'\itrhcre_ f is a poly-
nomial. Verify that f{AT) 1 is symmetric.] 'S _

20. Discuss the problem of determining a matris\F which reciprocates s
given 4 into a given B, when cne or more of thesqt@xe.é matrices are sypimetric,
skew, Hermitian, or general, '\ &

[Use the methods of Ex. 16 and 18.] PN .

21. By considering the Segre chmctegriaﬁc show that there are seven dis-
tinet types of pencils of conics {inelndingtoné singular pencil). i o

Identify the characteristics in thangase of a pair of base oonics with single
contact, double contact, three-poinb contact, four-point contach. _

L ofL 1 2] ]
[[2’ l]’\ [1 1 (3 [1 )
22. Discuss the confb@oﬁding problem of & pencil of quadrie surfaces.

[Fourteen non—ging:ular, and one singular case.]
928, If o, defieté the continued fraction

)" a | @ 1., fan n
\:“3“"_x—' [tteg — 7 — |age — % — [ @ —
AN .
t-hcn.(g-)m «,, Where m ig a positive integer, is the leading element in the matrix
BT
’s indi-

) . -
smffd — xI)~™ 1, where 4 denotes the continuant matrix with. the @
\ga‘Led and g4, ;= 1, corresponding to oy (Whittaker.)

[ Note:—The integral of the continued fraction of the prec
leading element in the matrix —log{d — =I}]

24, From » linear functions £; defined by

Ey=an® + @p% T - + @i
m are formed, and are taken as the com- .
¢ is related to the corresponding vector

eding example is the

or E= Awx -

all the powers and products of degree
ponents of a vector Elm], If thiy vecto

zlmi by the equation :
v .q. gim] = Almlglml,
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prove that for such matrices

[AB]m) = A B,

[4—]im) — [API], | A|+ 0.
Deduce that the latent roots of A[™] are the m-ary powers and products of the
latent roots of 4. (Franklin.}

25. Let A0 bo modified by having each column divided by the s
of the multinomial cocfficient, in its first eloment, and cach correspon .
multiplied by the square root. Prove that if 4 is Hermitian or unitary, sh radi-
tied A1) iz Hermitian or unitary.

96. Find the elementary divisors of [3(e)](2], [U 2112,

27 Solva the following cquation in , after determining the conditiona *:_e:-:!\;"f:r
it is soluble:

- CrA @y ag g ..\'\"\
Aox __ A b by A
R T
A A \:

28, The value of the multiple integral
f(:c’x)dx, over the range x’{k@g 1,
where the form 2’4z is positive definite, is th‘ég\n;n of the diagonal elemvats in
A7 multiplied by §minA—4T{3n + 2). ()"
29, The maximum and minimum values of ¢ = 24 %, subject to the corditiens
Bz —p, Czx=0, Oubeihg of order (n— 2) X n,
are given by the equation, in a qﬁgidripa:rtite determinant,

iﬁq —pd, C|_,
""... c .

30. The value of t-he\bltl.biple intogral

(2ﬂ)_3"'f~1§'3?1’1x)m1 (32’ Pyx)ma .. (fa Prpo)ms exp (—is Ax)de
s |
is the e?'eﬁél‘aﬁt of Ny YOO W T LR IR R Y
in t.l}p expansion of the determinant
~O | A — NPy — RoPy— - MePe]
A% 31. If A={ay] is & matrix of complex elements, and a;; denotes the modulus
of @, prove the Inequality, for all eloments,

(AB) < A.B.
i o "
4T B <A+ B

32. If s, is the sum of the absolute values of the elerents in the ith row of
& complex matrix A, and #; Is the ¢orresponding sum for the jth columm, and
s and { are the greatest of these, then the latent roots A of A are such that

A < 3+t (Browne.)
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8?3. Deduce, from the above, the inequality for latent roots of an Hermitian
atrix, and for « and § in the latent roots o+ ip ‘of a general mabrix.
- idrowne.}
24 The funetion of frequency (or probability} for two correlated variables
~and y ig
. 1 3 . 2
S g) = oo @y (1~ gt e — (5w (___ R y_))
{z, y) = o7 Loyt 2wy (L — Ty F exp = 0% \ogt 296102+022
1f ¥ samples of paired measures {«s 4} are taken, and the three quadratic moment
snefficlents are calculated about the mean {&, & where Nk, k} = Z{zp 4} bY
she formula ' N :

gy =11v,}:(:c§ A ;z(xg— B) (s — B)— by
1. , A
oy = B 0 — R~ ©
nrove that the mean value of the vector {myp My, Mash in all possible: samples

of N, is given by l15—1{“12’ pO1 Ty Ozt AN
. L

[The mean value will involve a 2N-ple integral] . ~“’;\

35, It B = [e;] iv a matrix of order n, where £ =\ I\or all £ and j, prove
that the matrix I — 1g s of vank n — 1. . ¢\‘\ ’

[The above may be proved directly. Tt can‘ also be deduced from the fact
that the sum of the squared deviations of # pumbers from their arithmetic mean
is reducible to a sum of » — 1 inrlepen(leﬁt} squares; for the fact that the sum -
of the deviations themselves must b&.zero imposes one relation of ‘linear
dependence on the variables.] ™ '

$6. Prove that the sum of the $h(n — 1) squared. differences of » numbers
taken in pairs is a quadratic fgn@ of rank % — 1.

(It will' be found to ,beithe same guadratic form, apart from a consiant
factor, as the sum of # tared deviations ahout the mean in the previousd
example. Cf. A. I. Bowley, Hlements of Stabistics, pp-.114-5.]

87. Transform\the ninitiple integral

Ot e
{\Y f.cp(o;’Ax)dm into the form ef ¢{dx.
& \'\\“ {"‘w} . 0

by .a.\’;‘.ﬁherical-polar transformation, where 3 = # Az is a positive definite
vatie form in % variables. .
\ [First reduce to a sum of squares by & congroent transformation.]

= R
g. If R =8 ——
3 w=E T
atrix 4 = [2,;], all whose latent roots are distinet,

ia the resolvent of & sguare m ; c :
of the partial fractions can be wrikten in the form

prove that the numerators Ry

fog | o=
= | -— | = 0o
. Ry I:Ba.ﬁ ®

where (2 is the matrix differential operator whosé #jth element i 8fbagq.
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89. A real orthogonal matrix P exista which reduces any giv\en real itrix A
to triangular form [I';;), where each submatrix I" is real and of orders 2 2, and
where .

r=[ °‘ 5], Ty = 0 when i > .
£ —B y 4] J

(F. D. Murnaghan and A. Wininer)
[By the methods of Ex. 14, p. 109, form an identity

A b= [ _* '],
. LL ’\

where @ 4 ib iy & latent vector corresponding to a latent oot 1 + dya, L¥ing
¢+ ik # 0, show that ¢ and b are both non-zero and linearly indepell nt.
Refer the matrices and vectors to an orthogonal frams B, consi€tish: «f the
‘internal and external bisectora of the anzle made by the vedtal¥ o and b,

together with » -~ 2 further orthozonal axes. Procead by {ths meothods of
the cited example.] : ,

at ¥ ;

\.
40. If 4 is an arbitrary non-singular matrix, then tha mé&hx Q== ({4°4}. 47
exists, and is unitary (or orthogonal): so also is A=V AA").

_ [(fA'd =B = P2 then P exists as a polynoa‘iﬁ}iﬁ B (by (30), p. 78): nlso
P'= P. Tarther, if @ = P4, then §'Q =¥J)
41. Any non-singular matrix 4 may bewdwlved into & pair of factors B, O,

and also into ®,R,, where the B factor 19 Harmitian {or symmetric), and the
© factor is unifary (or orthogonal). 3 (F. D. Murnaghsn and A. Wintner.)

(In Ex. 40 write 4 = Q1P = @yR,. Similarly for & 0,.]
42, The resolution of & nopfingular matrix 4 into B, @, and also into ©,R?
is wnigue when B, and R, are. 2a3h restricted $0 be positive definite.

Justify the nomencl uf{es:’leﬂ- and right-handed poler co-ordinstes (R, ©,)
(B, R,) of a non-singular matrix 4. Show that these alternative modes -

coalesco if and onlyyi A commutes with 4%,
O\ (F. D. Murnaghan and A. Winfner.)

[By consi.de:;:%é' the latent roots of v B, taking exactly v latent roots of B
to be dis ingt) show that v B has 27 possible alternative forms, only one of
which jg/positive definite. _

Thegealar formula 7 — r{cosd - i sin0) is a particular case of the matriz
forpila when A is a matrix of order unity.

\\ \‘dn.ly if A commutes with 4’ will &, = R, and @, = @,. In this case 4 is
s0metimes termed a normal matrix.]

43. Let H = x§ -} y&', where % and y are column vectors of » comples
" eloments. Prove that

H — (¥ +y} B2 —(af — 1} H =0,
where Fr=o Fy=08y=r.
Obtain the corresponding equations satisfied by
Q=zy -y, § =ay —yx.
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